scholarly journals Application of waste tyre rubber chips as coarse aggregate in concrete

2020 ◽  
Vol 30 (3) ◽  
pp. 328-334
Author(s):  
Z Muyen ◽  
F Mahmud ◽  
MN Hoque

The practicality and the engineering properties of portland cement concrete (PCC) and three types of rubberized PCC mixes prepared by partially replacing the conventional coarse aggregate with rubber were examined. The rubberized PCC mixes contained 5%, 10% and 15% waste tyre rubber chips as replacement of conventional coarse aggregate. Different physical and mechanical properties of the control (0% rubber chips) and the rubberized concrete samples were determined. A 5% replacement of conventional aggregates resulted in a 5% reduction of compressive strength, a 10% replacement resulted in a 26% reduction and a 15% replacement resulted in a reduction of 47%. A 5% replacement of conventional aggregates resulted in a 6% reduction of tensile strength, a 10% replacement resulted in a 33% reduction and a 15% replacement resulted in a reduction of 53%. A 5% replacement of conventional aggregates resulted in a 13% reduction of flexural strength, a 10% replacement resulted in a 33% reduction and a 15% replacement resulted in a reduction of 42%. Although concrete made from tyres had lower strength than the normal concrete, rubberized concrete can find its use in landscaping, sports field ground, architectural finishing, lightweight concrete walls etc. Progressive Agriculture 30 (3): 328-334, 2019

2018 ◽  
Vol 7 (4.20) ◽  
pp. 316 ◽  
Author(s):  
Adel A. Al-Azzawi ◽  
Dalia Shakir ◽  
Noora Saad

In Iraq, the use of rubber waste material in concrete is an interesting topic due to its availability in large volumes. Researches of applications of rubber waste in concrete have been increased since 2003. Many studies carried out to investigate the performance of concrete using different ratios of rubber as a replacement to fine or coarse aggregate. In this research, rubber wastes from scrapped tires have been added as fiber to concrete mix with presence of 0.5% superplasticizer. The flexural behavior of concrete beams, mechanical properties of concrete and workability of concrete mixes have been studied. Rubber fibers ranging from (2-4) mm were added in percentages of 0.5% and 1%) of the cement weight. The results have demonstrated that the addition of rubber material as fibers in natural aggregate concrete enhances its ductility, compressive strength and tensile strength compared to the normal concrete. The effect of rubber fiber content is found to be significant on the behavior of tested beams. If the fiber content increased from 0 to 0.5% the cracking load increased by 60 % and ultimate load increased by 21%. For rubberized concrete, if the fiber content increased from 0.5 to 1.0%, the cracking load decreased 7% and ultimate load increased by 4%.   


Author(s):  
Adeniran Jolaade ADEALA ◽  
Olugbenga Babajide SOYEM

Expanded polystyrene (EPS) wastes are generated from industries and post-consumer products. They are non-biodegradable but are usually disposed by burning or landfilling leading to environmental pollution. The possibility of using EPS as partial replacement for fine aggregates in concrete has generated research interests in recent times. However, since the physical and mechanical properties of EPS are not like those of conventional fine aggregates, this study is focussed on the use of EPS as an additive in concrete while keeping other composition (sand and granite) constant. Expanded polystyrene was milled, the bulk density of EPS was 10.57kg/m3 and particle size distributions were determined. Engineering properties of expanded polystyrene concrete were determined in accordance with BS 8110-2:1985. The result showed that the amount of expanded polystyrene incorporated in concrete influence the properties of hardened and fresh concrete. The compressive strengths of 17.07MPa with 5 % expanded polystyrene concrete at 28 days for example can be used as a lightweight concrete for partitioning in offices. Incorporating expanded polystyrene granules in a concrete matrix can produce lightweight polystyrene aggregate concrete of various densities, compressive strengths, flexural strengths and tensile strengths. In conclusion, this reduces environmental pollution, reduction in valuable landfill space and also for sustainability in construction companies


1992 ◽  
Vol 19 (5) ◽  
pp. 912-923 ◽  
Author(s):  
Neil N. Eldin ◽  
Ahmed B. Senouci

Growing piles of discarded tires are potential sources of fire and health hazards. The current disposal methods are wasteful and costly. As a possible solution to the problem of scrap-tire disposal, an experimental study was conducted to examine the potential use of rubber aggregate (tire chips and crumb rubber) as mineral aggregate substitute in Portland cement concrete mixes. The research focused on determining the strength characteristics of rubberized concrete and examined the relationship between the size, percentage, and shape of rubber aggregate and the strength measured.Rubberized concrete was found to possess good esthetics, acceptable workability, and a smaller unit weight than plain concrete. However, it exhibited low compressive and tensile strengths and lower resistance to repeated freezing and thawing cycles than that of plain concrete. A statistical analysis of the experimental data suggested that only the percentage by volume of rubber in the mix has a significant effect on strength. The size and shape was found insignificant. Unlike plain concrete, rubberized concrete did not demonstrate the typical brittle failure. It exhibited a ductile, plastic failure, and showed the ability to absorb a large amount of plastic energy under compressive and tensile loads. Key words: rubberized concrete, concrete properties, compression, durability, failure, modulus of elasticity, slump, tension, toughness, workability.


2014 ◽  
Vol 71 (3) ◽  
Author(s):  
Euniza Jusli ◽  
Hasanan Md Nor ◽  
Ramadhansyah Putra Jaya ◽  
Zaiton Haron ◽  
Azman, M

This paper presents a study on the investigation of waste tyre rubber (rubber granule) as aggregate in the production of concrete paving block (CPB) with double layers. A series of tests were carried out to determine the properties of double layer rubberized concrete paving blocks (DL-RCPB). In this study, there are four series of concrete mix with 10 %, 20 %, 30 % and 40 % of waste tyre rubber replacement level. The dimension of CPB was 200 mm x 100 mm x 80 mm with 20 mm thickness of facing layer. The results showed that the percentage of waste tyre rubber content for DL-RCPB affects the density, porosity and compressive strength. The control concrete paving block (CCPB) and DL-RCPB (10 %) achieve the minimum strength requirement of 45 MPa. The density of DL-RCPB (40 %) recorded reduce 24 % as compared to CCPB. At 28 days, the percentage of porosity increased up to 55 % when 40 % of aggregate were replaced with rubber granule. The skid resistance of concrete block increased by 7 % with the incorporation of rubber granule particle size of 1 – 4 mm and 5 – 8 mm up to 40 % as the replacement of fine aggregate and coarse aggregate, respectively.


2019 ◽  
Vol 8 (2) ◽  
pp. 4392-4395

The increasing demand of natural resources for the concrete production has impacted the surroundings and the concern to protect these natural resources is increasing. Lately, handling and management of scrap is the primary issue faced by the countries worldwide. The waste problem is the most important problems facing the world as a source of the environmental pollution. One of the censorious wastes to be control in today is ‘waste tyre’ because; recent development in transportation has create big number of vehicles, which produce huge quantities of used tyres. Disposing such waste tyres is a critical waste management concern around the world at the moment. Various research work had been conducted in the past which had results that showed reduction in the mechanical energy of the concrete. The motive of this study is to use the reshaped waste tyre rubber as partial alteration of coarse aggregate in the concrete and to examine the outcome of providing an mooring hole of10mm in dia on the surface of the rubber gravel which makes the cement plaster to form a cylindrical mooring between the gravel and the concrete as well work as are bar to the rubber gravel thereby, increase withstanding power to failure under load which simultaneously increase the strength. The partial replacements of coarse aggregates are done at 0%, 5%, 10%, 15% and 20% by quantity of coarse gravel. The resulting concrete beams are tested for the physical characteristics of concrete. The Comparison of flexural response of beams are made with ordinary Portland cement concrete (OPCC)and Reshaped Waste Tyre Rubber Aggregate Concrete (RWTRAC)for various compositions of Reshaped Waste Tyre Rubber Aggregate replacement to coarse aggregate. Consequently the tests on RWTRAC beams of 10 % rubber aggregate replacement are conducted and results indicated that all the beams are failed in pure bending region and gives deflection nearly same as the conventional beam with the influence of the ultimate moment. Based on the observations during testing, the beams failed in pure flexural compression failure mode. Ductility factor of RWTRAC beam also showed enhanced performance when compared with the performance of conventional concrete. After testing it is inferred that till 10% of RWTRA replacement, the compressive and flexural strength of concrete is nearly same as the conventional concrete, but from 10 to 20% the strengths are abruptly fallen.


2018 ◽  
Vol 250 ◽  
pp. 03006
Author(s):  
Mohd Naqiuddin Zamri ◽  
Norashidah Abd Rahman ◽  
Zainorizuan Mohd Jaini ◽  
Zulaikha Ahmad ◽  
Siti Amirah Azra Khairuddin

Foamed concrete is lightweight concrete formulated from a mixture of concrete mortar and established foam. Generally foamed concrete is known for its low engineering properties. Many researchers had conducted studies and more focused on the physical and mechanical properties of foamed concrete without taking into account the behavior on its fracture energy. Therefore, this study was carried out to investigate the effect of notch-to-depth ratio on fracture energy of foam concrete using three point bending testmethod. Beam specimens with V-notch were prepared at a densityof 1400kg/m3 and 1600kg/m3. Three different notch-to-depth ratios which were adopted at 0.1, 0.3 and 0.5. Fracture energy was determined using Hillerborg, Bazant and Comitee euro International du Beton (CEB) models. From the experimental results, it was shown that fracture energy decreases asthe notch-to-depth ratio increases.


2021 ◽  
Vol 2 (3) ◽  
pp. 18-22
Author(s):  
Md Roknuzzaman

Performance of plain concrete with partial replacement of coarse aggregate by rubber chips derived from the waste tire is taken into consideration and an attempt is made to investigate the influence of rubber size on strength, workability, and durability. Four different size ranges of tire chips such as 4.75-9.5 mm, 9.5-12.5 mm, 12.5-19 mm, and 19-25 mm are used to replace stone aggregates of corresponding sizes. A 7.5% replacement of coarse aggregate is made each time. Concrete of three different grades such as C20/25, C25/30, and C30/35 are considered. For every concrete grade, compressive strength is reduced with the addition of tire chips, but less strength loss is observed for the smaller-sized tire chips. Therefore, the best size is found to be 4.75-9.5 mm yielding a compressive strength 8.33%-18.48% (for different concrete grades) lower than that of corresponding control specimens. The workability of each mix based on slump value is found to increase with larger tire chip size. The durability inspection by acid curing reveals that 4.75-9.5 mm rubber performs best with a minimal strength reduction of 8.99%-16.38% as compared to the same specimen subjected to conventional water curing. Strength degradation is found to be more severe in the cases of the control specimen with lower strength.


2020 ◽  
Vol 19 (2) ◽  
pp. 019-032
Author(s):  
Małgorzata Szafraniec ◽  
Danuta Barnat-Hunek

The aim of the research presented in the paper was to evaluate the feasibility of using hydrophobic preparations based on organosilicon compounds for protection treatment on the lightweight concrete modified with sawdust. The experimental part of the work concerns the physical and mechanical properties of lightweight concrete and the influence of two hydrophobic agents on the contact angle of the material. Lightweight concrete contact angle (θw) was determined as a time function using one measuring liquid. Water repellent coatings in lightweight concrete structure with the coarse aggregate sawdust (CASD) using electron microscopy were presented. The effectiveness of hydrophobisation of porous lightweight concretes was determined on the basis of the research. For the hydrophobic surface, the contact angle decreased and it depended on the used agents. The lowest contact angle of 40.2° (t=0) was obtained for reference concrete before hydrophobisation and 112.2° after hydrophobisation with a methyl-silicone resin based on organic solvent. The results of scientific research confirm the possibility to produce lightweight concretes modified with CASD with adequate surface protection against external moisture.


Author(s):  
Thofan Agung Wibowo ◽  
Anisah Anisah ◽  
M. Agphin Ramadhan

This study aims to determine the mapping of research related to cigarette butts filter waste as coarse aggregate for making concrete according to its category. This study uses systematic literature review techniques to conduct research by analyzing the literature. Literature collection is done by searching several digital libraries by entering a search string that has been made based on the research queation with publication limits between 2011-2020. The results showed that from 182 literature obtained 4 of them were suitable for analysis. Based on the 4 literatures, it is known that normal concrete and lightweight concrete are produced from cigarette butts filter waste. The concrete that is most often made is normal concrete and the best compressive strength value that can be produced is 29.6 MPa with a cigarette butt filter waste mixture of 0.1% of the concrete density. The best quality produced is medium quality with K 300.84 and is included in the category of structural concrete.


Sign in / Sign up

Export Citation Format

Share Document