scholarly journals Correlation and path coefficient analysis in advanced wheat genotypes

2017 ◽  
Vol 15 (1) ◽  
pp. 1-12 ◽  
Author(s):  
DK Ayer ◽  
A Sharma ◽  
BR Ojha ◽  
A Paudel ◽  
K Dhakal

A field experiment was conducted in alpha lattice design in subtropical region of Nepal in the wheat crop to determine the association between yield and yield attributing traits through correlation and path analysis. The result showed highly significant variations among the genotypes for all the traits under study. Simple correlation coefficients revealed that the association of grain yield with biological yield followed by harvest index, plant height, thousand grain weight and Area Under SPAD Retread Curve (AUSRC) at anthesis were positive and highly significant (at 1% level of significance). The positive and significant (at 5% level of significance) association of grains per spike followed by flag leaf area with grain yield was also found. Path analysis showed that biological yield and harvest index had the highest positive direct effect on grain yield. While other traits contribute to the grain yield significantly indirectly via biological yield and harvest index. This suggests that biological yield and harvest index having significant positive correlation and high direct effect on grain yield explained the true relationship and the direct selection of the genotypes through these traits is effective for improving yield potentiality.SAARC J. Agri., 15(1): 1-12 (2017)

2020 ◽  
Vol 5 (2) ◽  
pp. 196-199
Author(s):  
Koshraj Upadhyay

To assess correlation and to find out the direct and indirect effect of yield attributing traits on grain yield, thirty wheat (Triticum aestivum L.) genotypes were experimented at Kamalamai-04, Phant, of Sindhuli district, Nepal. The experiment was laid out in alpha-lattice design with three replications. Thirteen quantitative traits including grain yield of wheat were studied during this study. The grain yield of wheat has significant (P≤0.01) and positive genotypic and phenotypic correlation with number of spikes per meter (0.6**, 0.47**), grains per spike (0.69**, 0.65**), weight of grains per spike (0.69**, 0.61**), thousand kernel weight (0.87**, 0.74**), maturity days (0.5*, 0.47**), above ground mass yield (0.96**, 0.83**) and  harvest index (0.93**, 0.64**) of wheat. The genotypic correlation is higher in magnitude than the phenotypic correlation for almost all the studied traits. Path analysis of genotypic correlation showed a high positive direct effect of plant height (0.75), above ground biomass (0.6), spike length (0.43), and harvest index (0.29) on grain yield of wheat. Hence, for increasing yield of wheat in the breeding program, selection and hybridization can be made more effective and accurate by using those a significant positive correlation coefficient and direct effect on the grain yield of wheat.


Author(s):  
Shantanu Das ◽  
Debojit Sarma

Thirty rice genotypes of local and exotic origin were analyzed to ascertain the genotypic and phenotypic correlation among 21 morpho-physiological and yield traits and their direct/ indirect contribution to grain yield under <italic>boro</italic> season. The result revealed that grain yield per plant had significant positive correlation with biological yield (0.927**, 0.766**), harvest index (0.748**, 0.658**), days to first flowering (0.459*, 0.377*), panicle length (0.501**, 0.445*), grains per panicle (0.576**, 0.484**) and 1000 grain weight (0.573**, 0.460*) at both genotypic and phenotypic levels. Path coefficient analyses at both genotypic and phenotypic levels revealed high positive direct effect of biological yield (0.7181) and harvest index (0.6382) on grain yield per plant. Thus direct selection for grain yield per plant and indirect selection through these characters would be effective to improve yield in <italic>boro</italic> rice.


Author(s):  
N. Nikitha Reddy ◽  
Gabrial M. Lal ◽  
B. Pragathi ◽  
P. Nikhil

The study was carried out to study the correlation and path coefficient analysis for grain yield characters in 36 rice genotypes including one check for 13 quantitative parameters. The experimental material was carried out during Kharif, 2020, in a randomized block design with three replications obtained from the Department of Genetics and Plant Breeding, SHUATS, Allahabad, U.P., India. Analysis of variance revealed that there is significant variability among the genotypes. Correlation coefficient analysis at genotype level and phenotypic level revealed that plant height, flag leaf length, flag leaf width, number of tillers per hill, number of panicles per hill, number of spikelets per panicle, biological yield, and harvest index, showed positive significant correlation with grain yield per plant. Path coefficient analysis at both genotypic and phenotypic levels revealed that flag leaf length, number of panicles per hill, days to maturity, biological yield, harvest index and test weight had positive direct effect on grain yield per hill. Biological yield per hill (0.8481) exerted high positive direct effect as well as high positive significant association (0.809**) with grain yield per hill thus this character resulted as most essential direct yield character.


2004 ◽  
Vol 34 (6) ◽  
pp. 1701-1708 ◽  
Author(s):  
Lauro Akio Okuyama ◽  
Luiz Carlos Federizzi ◽  
José Fernandes Barbosa Neto

This study was aimed to characterize yield components and plant traits related to grain yield. Correlation and path analysis were carried out in wheat genotypes grown under irrigated and non-irrigated field conditions. In the path coefficient analysis, grain yield represented the dependent variable and the number of spikes m-2, number of grains spike-1, kernel weight, days to anthesis, above-ground biomass m-2 and plant height were the independent ones. In both years, periods without rain occurred from early milk to grain ripening and from flag leaf sheath opening to grain ripening for first and second sowing dates, respectively. Character associations were similar in both water regimes. Grain yield showed positive phenotypic correlation with above-ground biomass, number of spikes m-2 and number of grains per spike. Path analysis revealed positive direct effect and moderate correlation of number of spike m-2 and number of grains per spike with grain yield. These results indicated that the number of spikes m-2 and the number of grains per spike followed by the above-ground biomass were the traits related to higher grain yield, under irrigated and late season water stress conditions.


2016 ◽  
Vol 29 (1) ◽  
pp. 21-30
Author(s):  
M. N. Huda ◽  
M. S. Hossain ◽  
M. Sonom

The experiment was conducted in the experimental area of Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka during March to June, 2014 to study the genetic variability, correlation and path co-efficient analysis for yield and yield contributing characters of maize. In this experiment 25 maize genotypes were used as experimental materials. The experiment was laid out in Randomized Complete Block Design (RCBD) with three replications. Mean performance, variability, correlation matrix and path analysis on different yield contributing characters and yield of maize genotypes were estimated. The highest grain yield/plant (272.21 g) was recorded in the genotype of BARI Hybrid Maize-6, whereas the lowest grain yield/plant (180.40 g) from the genotype of NZ-003. Phenotypic coefficient of variation was higher than the genotypic coefficient of variation for all the yield contributing traits. In correlation study, significant positive association was recorded for grain yield/plant of maize genotypes with plant height (0.235), tassel height (0.359), number of grains/cob (0.854), cob length (0.390), cob diameter (0.313) and weight of 1000-grains (0.689). Path analysis revealed that days to initiation of male flower had positive direct effect (0.132), days to initiation of female flower had negative direct effect (-0.254), days to maturity had positive direct effect (0.178), plant height had positive direct effect (0.314), tassel height had positive direct effect (0.234), ear length had positive direct effect (0.197), number of grains/cob had negative direct effect (-0.095), cob length had positive direct effect (0.167), cob diameter had positive direct effect (0.168) and that weight of 1000-grains had positive direct effect (0.217) on yield / plant.


2014 ◽  
Vol 6 (1) ◽  
pp. 119-124 ◽  
Author(s):  
Mohtasham MOHAMMADI ◽  
Peyman SHARIFI ◽  
Rahmatollah KARIMIZADEH

An experiment was conducted to evaluate 295 wheat genotypes in Alpha-Lattice design with two replications. The arithmetic mean and standard deviation of grain yield was 2706 and 950 (kg/ha),respectively. The results of correlation coefficients indicated that grain yield had significant and positive association with plant height, spike length, early growth vigor and agronomic score. Whereas there were negative correlation coefficients between grain yield and days to physiological maturity and canopy temperature before and during anthesis. Path analysis indicated agronomic score and plant height had high positive direct effects on grain yield, while canopy temperature before and during anthesis, and days to maturity, wes another trait having negative direct effect on grain yield. The results of sequential path analysis showed the traits that accounted as a criteria variable for high grain yield were agronomic score, plant height, canopy temperature, spike length, chlorophyll content and early growth vigor, which were determined as first, second and third order variables and had strong effects on grain yield via one or more paths. More important, as canopy temperature, agronomic score and early growth vigor can be evaluated quickly and easily, these traits may be used for evaluation of large populations.


1970 ◽  
Vol 37 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Mevlüt Türk ◽  
Necmettin Çelik ◽  
Gamze Bayram ◽  
Emine Budakli

Results of correlation analysis indicated that seed yield in narbon bean (Vicia narbonensis L.) was correlated positively with harvest index, biological yield, weight, number of seed and number of pod per plant and also plant height and number of plant per m2. Path coefficient analyses revealed that harvest index and biological yield had higher positive direct effects on seed yield than other variables. Stepwise multiple regression analysis showed that 95.1% of total variation in seed yield could be explained by the variation in harvest index, biological yield and plant height. Results suggest that harvest index and biological yield are primary selection criteria for improving seed yield in narbon bean.   


Author(s):  
V.V. Singh ◽  
Laxman Prashad ◽  
Balbeer . ◽  
H.K. Sharma ◽  
M.L. Meena ◽  
...  

Background: Correlation analysis informs us about the relative importance of the breeding traits and quite useful for plant breeders to formulate their breeding and selection strategies. Path coefficient analysis splits the correlation coefficient into the measures of indirect and direct effect. It identifies the indirect and direct influence of different autonomous genotype on a dependent trait. Present study aimed to determine major seed contributing components affecting seed yield and also to know the relationship among these components. Methods: Present investigation was carried out on 147 advanced breeding lines to know the correlations and path coefficient for 12 yield and yield contributing traits. The material was evaluated in augmented block design with 07 blocks, each block having 21 lines. A set of three check varieties were repeated in each block. Observations were recorded on number of primary branches/plant, number of secondary branches/plant, plant height (cm), silique/plant, fruiting zone length (cm), main shoot length (cm), number of seeds/siliquae, siliquae length (cm), biological yield/plant (g), seed yield/plant (g), harvest index and test weight. Result: The seed yield per plant showed positive and significant correlation with primary branches per plant (0.273), secondary branches per plant (0.280), siliquae per plant (0.627), biological yield per plant (0.744), harvest index (0.188), test weight (0.212) and oil content (0.225). Biological yield per plant (0.5747) had maximum direct effect on seed yield per plant followed by siliquae per plant (0.2438), harvest index (0.127), oil content (0.118) and test weight. These characters have positive and significant association with seed yield per plant. The study thus indicated that biological yield per plant, siliquae per plant, harvest index and test weight are the important characters which should be considered in selection programme in Indian mustard.


Author(s):  
Babburi Dinesh ◽  
Gaibriyal M. Lal ◽  
L. Bhanuprasad

A set of twenty four rice genotypes including one check variety were grown to estimate study genetic variability, heritability, genetic advance, correlation and path coefficient for 13 quantitative characters, observation recorded to study the genetic variability parameters, correlation coefficient and path coefficient for yield and its attributing traits. High to moderate estimates of GCV and PCV were recorded for test weight followed by spikelets per panicle, grain yield per plant, flag leaf width, flag leaf length, tillers per hill, biological yield and panicles per hill. Grain yield indicated significant positive correlation with plant height followed by tillers per hill, panicles per hill, biological yield and harvest index in terms of phenotypic correlation coefficient whereas in terms of genotypic coefficient it showed positive and significant correlation with plant height, tillers per hill, panicles per hill, biological yield and harvest index. Path coefficient analysis showed positive significant direct effects on grain yield per hill were exhibited by plant height, tillers per hill and harvest index at genotypic level whereas it showed positive and significant direct effect for tillers per hill, flag leaf width, biological yield and harvest index at phenotypic level. Thus, these traits are identified as the efficient and potential for indirect selection for the improvement of rice productivity in the present experimental materials.


2012 ◽  
Vol 37 (3) ◽  
pp. 493-503 ◽  
Author(s):  
DAN Majumder ◽  
L Hassan ◽  
MA Rahim ◽  
MA Kabir

Sixty diverse genotypes of mango were selected from the Germplasm Centre of BAU during December 2007–August 2009 to determine the genotypic and phenotypic correlation along with their direct and indirect effects through path coefficients analysis in mango as to estimate the contribution of most important characters towards yield. It appeared that in most of the cases, the genotypic correlation values were higher than their corresponding phenotypic values. This suggests that there were strong inherent relationship between the traits. Percent flowering shoot had significant positive correlation with inflorescence per shoot, percent perfect flower, percent initial fruit set, number of fruits per plant and fruit weight both at phenotypic and genotypic levels. Fruit yield is determined by some components. The residual effects of genetic and phenotypic path analysis were 0.209 and 0.385, respectively, revealed higher genetic variability and also proved lower percent of environmental influence on the selected ten characters. In genotypic path analysis, number of fruits per plant had the highest positive direct effect (0.899) on yield. Higher positive direct effects were also observed for the characters inflorescence per shoot (0.539), percent perfect flower (0.816), and percent initial fruit set (0.292), and fruit weight (0.324). Leaf area, percent flowering shoot, number of fruits per plant, and fruit length showed negative direct effects towards yield. In phenotypic path analysis, except percent flowering, shoot per plant and fruit length and other characters also exhibited similar trend on yield as genotypic path coefficient. In combination with correlation coefficient and path analysis, it was found that number of fruits per plant and percent perfect flower gave significant positive correlation coefficients with yield and also produce the high positive direct effect. Thus, it was clear that plant height, inflorescence per shoot, percent perfect flower, percent initial fruit set per inflorescence, and fruit weight are the major component of fruit yield in mango. Bangladesh J. Agril. Res. 37(3): 493-503, September 2012 DOI: http://dx.doi.org/10.3329/bjar.v37i3.12126


Sign in / Sign up

Export Citation Format

Share Document