scholarly journals KAJIAN PEMASANGAN LIGHTNING ARRESTER PADA SISI HV TRANSFORMATOR DAYA UNIT SATU GARDU INDUK TELUK BETUNG

2018 ◽  
Vol 9 (2) ◽  
pp. 168-179
Author(s):  
Redaksi Tim Jurnal

Generally, The power centers are connected to the air transmission line, and the airborne transmission channel is susceptible to disturbances that are affected from outside the system, one of which is a lightning strike. Lightning strikes are harmful to the components present in the central power supply. And therefore, the protection from the lightning strikes is required, so that the components in the power center is not damaged when exposed to lightning surges. In this research we discussed the power transformer protection (60MVA) on the Teluk Betung substation so that the power transformer is safe from the over voltage caused by the lightning surge. The specification of the arresters mounted on the HV side of the power transformer unit one of Teluk Betung substation with nominal voltage of 144 kV has been in accordance with the system requirements. The maximum distance between the arrester and the allowable power transformer is 28.5 meters. Distance in the field is 3 meters, the voltage that arrives at the power transformer is 480 kV and still below the Basic insulation level of the transformer, so that the protection of the power transformer against the lightning surge is very good.

2021 ◽  
Vol 242 ◽  
pp. 03009
Author(s):  
Pengkang Xie ◽  
Zhen Fang

Overhead ground wires have been proved to be effective to protect conductors from direct lightning strikes, but breakouts of ground wires have been frequently reported. In order to prevent ground wire breakout incidents to happen, unshielded 220kV lines equipped with metal oxide arresters (MOAs) whole line have been proposed in this paper. After cancelling ground wire, lightning strike risk of transmission lines becomes much higher. In order to improve the anti-lightning abilities of unshielded transmission lines, it is necessary to obtain the lightning energy absorption ability of these MOAs. In this paper, simulation model of MOA equipped unshielded 220kV transmission line was built, the influences of lightning parameters, striking occurrence point and grounding resistance of transmission tower on the absorbed energy of MOAs were calculated, and the suggested energy absorption ability of MOA was given, which can give references for the improvement of power supply reliability of transmission lines.


2020 ◽  
Vol 67 (1) ◽  
pp. 42-47
Author(s):  
Anatoliy I. Sopov ◽  
Aleksandr V. Vinogradov

In power transformers, energy losses in the form of heat are about 2 percent of their rated power, and in transformers of large power centers reach hundreds of kilowatts. Heat is dissipated into the environment and heats the street air. Therefore, there is a need to consume this thermal energy as a source of heat supply to nearby facilities. (Research purpose) To develop methods and means of using excess heat of power transformers with improvement of their cooling system design. (Materials and methods) The authors applied following methods: analysis, synthesis, comparison, monographic, mathematical and others. They analyzed various methods for consuming excess heat from power transformers. They identified suitable heat supply sources among power transformers and potential heat consumers. The authors studied the reasons for the formation of excess heat in power transformers and found ways to conserve this heat to increase the efficiency of its selection. (Results and discussion) The authors developed an improved power transformer cooling system design to combine the functions of voltage transformation and electric heating. They conducted experiments to verify the effectiveness of decisions made. A feasibility study was carried out on the implementation of the developed system using the example of the TMG-1000/10/0.4 power transformer. (Conclusions) The authors got a new way to use the excess heat of power transformers to heat the AIC facilities. It was determined that the improved design of the power transformer and its cooling system using the developed solutions made it possible to maximize the amount of heat taken off without quality loss of voltage transformation.


2021 ◽  
Vol 13 (4) ◽  
pp. 282-289
Author(s):  
I. V. Naumov ◽  
D. N. Karamov ◽  
A. N. Tretyakov ◽  
M. A. Yakupova ◽  
E. S. Fedorinovа

The purpose of this study is to study the effect of loading power transformers (PT) in their continuous use on their energy efficiency on a real-life example of existing rural electric networks. It is noted that the vast majority of PT in rural areas have a very low load factor, which leads to an increase in specific losses of electric energy when this is transmitted to various consumers. It is planned to optimize the existing synchronized power supply systems in rural areas by creating new power supply projects in such a way as to integrate existing power sources and ensure the most efficient loading of power transformers for the subsequent transfer of these systems to isolated ones that receive power from distributed generation facilities. As an example, we use data from an electric grid company on loading power transformers in one of the districts of the Irkutsk region. Issues related to the determination of electric energy losses in rural PT at different numerical values of their load factors are considered. A computing device was developed using modern programming tools in the MATLAB system, which has been used to calculate and plot the dependence of power losses in transformers of various capacities on the actual and recommended load factors, as well as the dependence of specific losses during the transit of 1 kVA of power through a power transformer at the actual, recommended and optimal load factors. The analysis of specific losses of electric energy at the actual, recommended and optimal load factors of PT is made. Based on the analysis, the intervals of optimal load factors for different rated power of PT of rural distribution electric networks are proposed. It is noted that to increase the energy efficiency of PT, it is necessary to reduce idling losses by increasing the load of these transformers, which can be achieved by reducing the number of transformers while changing the configuration of 0.38 kV distribution networks.


2018 ◽  
Vol 197 ◽  
pp. 11001
Author(s):  
Aristo Adi Kusuma ◽  
Putu Agus Aditya Pramana ◽  
Brian Bramantyo S.D.A. Harsono ◽  
Buyung Sofiarto Munir

Based on Java-Bali grid disturbance data, the 66kV transmission lines that is close to or intersect with 150kV or 500kV transmission line is often experienced earth fault due to insulator flashover. The insulator flashover can be caused by indirect lightning strike since lightning strikes tend to strike higher structure. Therefore, this paper will determine the effect of indirect lightning strike on 150kV or 500kV transmission line to 66kV transmission line by modeling and simulation using application of transient analysis. Variation of lightning peak current magnitude and gap between 66kV transmission line and transmission line with higher voltage is performed during simulation. The range of peak current magnitude follows the data from lightning detection systems, while the value of gap follows the data from actual condition. It is found that higher current peak and closer gap will cause higher transient overvoltage on insulator of 66kV transmission line thus insulator flashover may occur more frequent. Addition of earth wire on 66kV transmission line and gap between each transmission by organizing the sag of conductor can be performed to minimize the insulator flashover.


2020 ◽  
Vol 11 (7-2020) ◽  
pp. 66-72
Author(s):  
Liubov A. Belova ◽  

The earth-termination system for towers of ground-based wind turbines in addition to protective and functional grounding provides lightning protection grounding, which is especially important since the wind turbine is susceptible to lightning strikes. If insufficient protective measures are taken, the risk of damage to a wind turbine due to a lightning strike increases. Therefore, a well-thought-out built-in grounding system for wind turbine towers is needed, which would function as necessary and guarantee long-term mechanical strength and corrosion resistance. The configuration of grounding systems for wind turbines is discussed in IEC 61400-24, which deals with the topic of lightning protection for wind turbines, including detailed information on the choice of lightning protection measures and surge protection. It is advisable to create a lightning protection concept at the initial stage of planning a wind turbine in order to avoid later costly repairs and retrofitting.


Sign in / Sign up

Export Citation Format

Share Document