scholarly journals Nitrogen mineralization dynamics of meat bone meal and cattle manure as affected by the application of softwood chips biochar in soil

Author(s):  
Priit Tammeorg ◽  
Tero Brandstaka ◽  
Asko Simojoki ◽  
Juha Helenius

We studied the impact of added biochar on the N mineralization dynamics of two organic fertilizers by incubating sandy loam soil for 133 days in controlled conditions. Biochar made from softwood chips was added to soil at 0, 4.6, 9.1 and 13.6 g kg-1 soil DM either alone, or in combination with meat bone meal (MBM) and composted cattle manure (CCM) fertilizers. Soil mineral N concentration was determined on days 0, 14, 28, 56, 84 and 133. Net N mineralization in MBM treatment was much larger than in CCM and unfertilized treatments. Constant soil moisture during the incubation provided suitable aerobic soil conditions for nitrification: after day 14, soil mineral N was dominated by nitrate in all treatments. Biochar additions decreased the mineral N concentrations in all treatments, probably because of immobilization by microbes. In unfertilized soil, the immobilisation by biochar increased steadily with application rate and time, but in MBM and CCM it started to decrease or level off after two months, possibly due to the turnover of microbial biomass.

Author(s):  
Priit Tammeorg ◽  
Tero Brandstaka ◽  
Asko Simojoki ◽  
Juha Helenius

ABSTRACTWe studied the impact of added biochar on the N mineralisation dynamics of two organic fertilisers by incubating loamy sand soil for 133 days in controlled conditions. Biochar made from softwood chips was added to soil at 0, 4·6, 9·1 and 13·6 g kg–1 soil dry matter (DM) either alone, or in combination with meat bone meal (MBM) and composted cattle manure (CCM) fertilisers. Soil mineral N concentration was determined on days 0, 14, 28, 56, 84 and 133. Net N mineralisation in the MBM treatment was much larger than in the CCM or the unfertilised treatments. Constant soil moisture during the incubation provided suitable aerobic soil conditions for nitrification: after day 14, soil mineral N was dominated by nitrate in all treatments. Biochar additions decreased the mineral N concentrations in all treatments, probably because of immobilisation by microbes. In unfertilised soil, the immobilisation by biochar increased steadily with application rate and time, but in the MBM and CCM treatments, it started to decrease or level off after two months, possibly due to the turnover of microbial biomass. The main biochar-induced impacts on soil N mineralisation dynamics could be modelled by using standard and confined exponential models.


2020 ◽  
Vol 255 ◽  
pp. 107863 ◽  
Author(s):  
Xiaogang Yin ◽  
Kurt-Christian Kersebaum ◽  
Nicolas Beaudoin ◽  
Julie Constantin ◽  
Fu Chen ◽  
...  

1997 ◽  
Vol 128 (3) ◽  
pp. 251-262 ◽  
Author(s):  
J. P. GRYLLS ◽  
J. WEBB ◽  
C. J. DYER

From 1985 to 1987, 20 experiments were carried out on shallow chalk soils, in which soil N reserves were expected to be small, to assess seasonal variations in the response of winter cereals to applied fertilizer N, and to relate these responses to measurements of soil mineral N (SMN), temperature and soil moisture deficits (SMD).Soil mineral N measured in autumn varied from 21 kg/ha (1986) to 73 kg/ha (1985), while SMN in spring ranged from 19 kg/ha (1987) to 91 kg/ha (1985), these values were typical of soils in long-term arable rotations. Estimates of apparent net N mineralization (AM) during the growing season were small at c. 26 kg/ha and suggested large seasonal variation. The small AM is considered to be due to the shallow topsoil drying out during the growing season. Whole crop N offtake without fertilizer N was only c. 40kg/ha. Crop N offtake, grain yield without fertilizer N and AFR (apparent recovery of fertilizer N) could not be reliably predicted by regression on SMN in autumn, SMN in spring or AM. Little or none of the variation in crop yield could be accounted for by regression on accumulated temperature over winter, maximum SMD in April to July or mean temperature in April to July.Despite optimum grain yields being only moderate at 6·59 t/ha for winter wheat and 6·78 t/ha for winter barley, response to applied fertilizer N was large, between 3·77 and 5·38 t/ha. In consequence the requirement for fertilizer N (c. 240–250 kg/ha) was also large, but differed little between seasons. This large requirement is concluded to be a result of limited fertilizer recovery and mineralization of soil N during the growing season.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2307
Author(s):  
Anna Nogalska ◽  
Aleksandra Załuszniewska

A long-term (six year) field experiment was conducted in Poland to evaluate the effect of meat and bone meal (MBM), applied without or with mineral nitrogen (N) fertilizer, on crop yields, N content and uptake by plants, and soil mineral N balance. Five treatments were compared: MBM applied at 1.0, 1.5, and 2.0 Mg ha−1, inorganic NPK, and zero-fert check. Mineral N accounted for 100% of the total N rate (158 kg ha−1) in the NPK treatment and 50%, 25%, and 0% in MBM treatments. The yield of silage maize supplied with MBM was comparable with that of plants fertilized with NPK at 74 Mg ha−1 herbage (30% DM) over two years on average. The yields of winter wheat and winter oilseed rape were highest in the NPK treatment (8.9 Mg ha−1 grain and 3.14 Mg ha−1 seeds on average). The addition of 25% and 50% of mineral N to MBM had no influence on the yields of the tested crops. The N content of plants fertilized with MBM was satisfactory (higher than in the zero-fert treatment), and considerable differences were found between years of the study within crop species. Soil mineral N content was determined by N uptake by plants rather than the proportion of mineral N in the total N rate. Nitrogen utilization by plants was highest in the NPK treatment (58%) and in the treatment where mineral N accounted for 50% of the total N rate (48%).


1994 ◽  
Vol 74 (1) ◽  
pp. 23-28 ◽  
Author(s):  
D. C. Jans-Hammermeister ◽  
W. B. McGill ◽  
T. L. Jensen

The distribution and dynamics of N following green manuring of full bloom field pea (Pisum sativum ’Sirius’) were investigated in the soil mineral, microbial and non-microbial organic (NMO N) fractions at two contrasting field sites in central Alberta; one on a Chernozemic (Dark Brown) soil near Provost and the other on a Luvisolic (Gray Luvisol) soil near Rimbey. Soils were sampled four times during a 1-yr period. The accumulations of N in the whole soil and in the soil mineral and microbial fractions were similar between sites. Net mineralization rates under controlled environments were strongly influenced by pre-incubation soil conditions. The short-term dynamics of N were distinguished best between the two soils by mineralization rates normalized to selected soil fractions rather than on the basis of N accumulation in these fractions. Net N mineralization rates expressed on the basis of soil N, microbial N or NMO N were greater in the Luvisolic soil indicating a more rapid internal N cycling system and greater activity of microbial biomass. These observations were consistent with the hypothesis that higher rates are associated with soils of lower clay content. Key words: Soil N dynamics, N mineralization rate, legume green manuring, Chernozemic, Luvisolic


2007 ◽  
Vol 37 (3) ◽  
pp. 313-320 ◽  
Author(s):  
Carol Melanie Schwendener ◽  
Johannes Lehmann ◽  
Marco Rondon ◽  
Elisa Wandelli ◽  
Erick Fernandes

Long term applications of leguminous green mulch could increase mineralizable nitrogen (N) beneath cupuaçu trees produced on the infertile acidic Ultisols and Oxisols of the Amazon Basin. However, low quality standing cupuaçu litter could interfere with green mulch N release and soil N mineralization. This study compared mineral N, total N, and microbial biomass N beneath cupuaçu trees grown in two different agroforestry systems, north of Manaus, Brazil, following seven years of different green mulch application rates. To test for net interactions between green mulch and cupuaçu litter, dried gliricidia and inga leaves were mixed with senescent cupuaçu leaves, surface applied to an Oxisol soil, and incubated in a greenhouse for 162 days. Leaf decomposition, N release and soil N mineralization were periodically measured in the mixed species litter treatments and compared to single species applications. The effect of legume biomass and cupuaçu litter on soil mineral N was additive implying that recommendations for green mulch applications to cupuaçu trees can be based on N dynamics of individual green mulch species. Results demonstrated that residue quality, not quantity, was the dominant factor affecting the rate of N release from leaves and soil N mineralization in a controlled environment. In the field, complex N cycling and other factors, including soil fauna, roots, and microclimatic effects, had a stronger influence on available soil N than residue quality.


Soil Research ◽  
2001 ◽  
Vol 39 (3) ◽  
pp. 519 ◽  
Author(s):  
J. Sierra ◽  
S. Fontaine ◽  
L. Desfontaines

Laboratory incubations and a field experiment were carried out to determine the factors controlling N mineralization and nitrification, and to estimate the N losses (leaching and volatilization) in a sewage-sludge-amended Oxisol. Aerobically digested sludge was applied at a rate equivalent to 625 kg N/ha. The incubations were conducted as a factorial experiment of temperature (20˚C, 30˚C, and 40˚C) soil water (–30 kPa and –1500 kPa) sludge type [fresh (FS) water content 6230 g/kg; dry (DS) water content 50 g/kg]. The amount of nitrifiers was determined at the beginning and at the end of the experiment. The incubation lasted 24 weeks. The field study was conducted using bare microplots (4 m) and consisted of a factorial experiment of sludge type (FS and DS) sludge placement (subsurface, I+; surface, I–). Ammonia volatilization and the profile (0–0.90 m) of mineral N concentration were measured during 6 and 29 weeks after sludge application, respectively. After 24 weeks of incubation at 40˚C and –30 kPa, net N mineralization represented 52% (FS) and 71% (DS) of the applied N. The difference between sludges was due to an initial period of N immobilization in FS. Nitrification was more sensitive than N mineralization to changes in water potential and it was fully inhibited at –1500 kPa. The introduction of a large amount of nitrifiers with FS did not modify the rate of nitrification, which was principally limited by soil acidity (pH 4.9). Although N mineralization was greatest at 30˚C, nitrification increased continuously with temperature. Nitrogen mineralization from DS was well described by the double-exponential equation. For FS, the equation was modified to take into account an immobilization-remineralization period. Sludge placement significantly affected the soil NO-3/NH+4 ratio in the field: 16 for I+ and 1.5 for I–, after 11 weeks. In the I– treatment, nitrification of the released NH+4 was limited by soil moisture because of the dry soil mulch formed a few hours after rain. At the end of the field experiment, the estimated losses of N by leaching were 432 kg N/ha for I+ and 356 kg N/ha for I–. Volatilization was not detectable in the I+ microplots and it represented only 0.5% of the applied N in the I– microplots. The results showed that placement of sludge may be a valuable tool to decrease NO-3 leaching by placing the sludge under unfavourable conditions for nitrification.


2011 ◽  
Vol 8 (8) ◽  
pp. 2341-2350 ◽  
Author(s):  
L. Song ◽  
X. Bao ◽  
X. Liu ◽  
Y. Zhang ◽  
P. Christie ◽  
...  

Abstract. Chinese grasslands are extensive natural ecosystems that comprise 40 % of the total land area of the country and are sensitive to N deposition. A field experiment with six N rates (0, 30, 60, 120, 240, and 480 kg N ha−1 yr−1) was conducted at Duolun, Inner Mongolia, during 2005 and 2010 to identify some effects of N addition on a temperate steppe ecosystem. The dominant plant species in the plots were divided into two categories, grasses and forbs, on the basis of species life forms. Enhanced N deposition, even as little as 30 kg N ha−1 yr−1 above ambient N deposition (16 kg N ha−1 yr−1), led to a decline in species richness. The cover of grasses increased with N addition rate but their species richness showed a weak change across N treatments. Both species richness and cover of forbs declined strongly with increasing N deposition as shown by linear regression analysis (p < 0.05). Increasing N deposition elevated aboveground production of grasses but lowered aboveground biomass of forbs. Plant N concentration, plant δ15N and soil mineral N increased with N addition, showing positive relationships between plant δ15N and N concentration, soil mineral N and/or applied N rate. The cessation of N application in the 480 kg N ha−1 yr−1 treatment in 2009 and 2010 led to a slight recovery of the forb species richness relative to total cover and aboveground biomass, coinciding with reduced plant N concentration and soil mineral N. The results show N deposition-induced changes in soil N transformations and plant N assimilation that are closely related to changes in species composition and biomass accumulation in this temperate steppe ecosystem.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1470
Author(s):  
Inmaculada Bautista ◽  
Luis Lado-Monserrat ◽  
Cristina Lull ◽  
Antonio Lidón

In order to assess the sustainability of silvicultural treatments in semiarid forests, it is necessary to know how they affect the nutrient dynamics in the forest. The objective of this paper is to study the effects of silvicultural treatments on the net N mineralization and the available mineral N content in the soil after 13 years following forest clearings. The treatments were carried out following a randomized block design, with four treatments and two blocks. The distance between the two blocks was less than 3 km; they were located in Chelva (CH) and Tuéjar (TU) in Valencia, Spain. Within each block, four experimental clearing treatments were carried out in 1998: T0 control; and T60, T75 and T100 where 60%, 75% and 100 of basal area was eliminated, respectively. Nitrogen dynamics were measured using the resin tube technique, with disturbed samples due to the high stoniness of the plots. Thirteen years after the experimental clearings, T100, T75 and T60 treatments showed a twofold increase in the net mineralization and nitrification rates with respect to T0 in both blocks (TU and CH). Within the plots, the highest mineralization was found in sites with no plant cover followed by those covered by undergrowth. These results can be explained in terms of the different litterfall qualities, which in turn are the result of the proportion of material originating from Pinus halepensis Mill. vs. more decomposable undergrowth residues.


Sign in / Sign up

Export Citation Format

Share Document