scholarly journals UPAYA PENINGKATAN SENSITIVITAS NANOPARTIKEL PERAK UNTUK ANALISIS ION MERKURI(II) SECARA CITRA DIGITAL DENGAN PENAMBAHAN NaCl

Alotrop ◽  
2019 ◽  
Vol 3 (2) ◽  
Author(s):  
Edo Prasetia ◽  
M. Lutfi Firdaus ◽  
Elvinawati Elvinawati

The very small concentration of mercury (Hg) in the environment is difficult to detect, so an accurate and sensitive method is needed in order to detect the concentration. Therefore, the purpose of this study was to develop an accurate and sensitive method based on the use of digital imaging methods and silver nanoparticles (AgNPs) as colorimetric sensors for mercury(II) ions (Hg2+) analysis. The process of making AgNPS is done by a bottom up method involving a reduction reaction. The precursor used is 1 mM AgNO3 solution and as bioreductor is an antioxidant compound present in extract of chili pepper (Capsicum frutescens L) with ratio 1: 9. Contact time variation 15, 30, 45, 60 min and 1, 2, 7 days. Addition of NaCl 0.5 and 1 M NaCl were used to increase the sensitivity of AgNPs as colorimetric sensors of Hg2+ ions. Digital Image Method is used to analyze Hg2+ ions at ppb concentration level. The results of the most optimum silver nanoparticles synthesized at the time of solar heating is 60 minutes. The addition of NaCl 0.5 M and 1 M into AgNPs is able to increase the sensitivity of AgNPs. Limit of Detection (LoD) of AgNPs added NaCl 0.5 M and 1 M was able to detect Hg2 + ions by 3.02 ppb and 2.46ppb.

Alotrop ◽  
2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Purwo Ismaya Sari ◽  
M. Lutfi Firdaus ◽  
Rina Elvia

The goal of this research was to make silver nanoparticles (NPP) with a cherry fruit extract bioreductor which was used for mercury metal analysis by using a digital image method. The process of making silver nanoparticles had done by a bottom up method involving a reduction reaction. The precursors used were 1 mM AgNO3 solution and as a bioreductor was an antioxidant compound which were in cherry fruit extract. Variation of the volume ratio between cherry fruit extract and 1 mM AgNO3 solution was 1: 3, 1: 4, 1: 5, 1: 6, and 1: 7 and the variation of contact time were 5, 15, 30, 45, 1, 2, 3 hours, and 1, 2, 7 days. The most optimum results of silver nanoparticles were synthesized with 1 : 4 volume ratio and 1 hour contact time. From the results of selectivity test, it was known that silver nanoparticles were made selective toward Hg and Fe metal. The sensitivity test toward Hg metal, it was known that NPP can detect mercury metal with the smallest concentration of 16,7  ppb.


Author(s):  
Cai Zhijiang ◽  
Hou Chengwei ◽  
Yang Guang ◽  
Kim Jaehwan

In this paper, we investigate a novel method using bacterial cellulose (BC) as template by in situ method to prepare BC/silver nanocomposites. We first introduce sonication procedure during immersion and reduction reaction process to make sure that the silver nanoparticles can be formed and distributed homogeneously throughout the whole bacterial cellulose network. The BC/silver nanocomposites were confirmed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). To examine the effect of varying solution concentrations on silver nanoparticles formation, the concentration of AgNO3 solution was increased from 0.01 M to 0.05 M and Ag+-ions were reduced by the same concentration of NaBH4. The effects of time and frequency of sonication on BC/silver nanocomposite preparation were also investigated by varying sonication time from 10 min to 60 min and sonication frequency from 20 kHz to 60 kHz. Compared with an ordinary process, ultrasound seems to be an effective way for ions to penetrate into BC and thus the weight percent of silver nanoparticles can be increased. Combined with TGA result, the weight percent of silver nanoparticles can be improved from 8.9% to 31.7% with simple sonication procedure performed by the same preparation condition. However, the average size of silver nanoparticles is around 15 nm, which is bigger than ordinary process. This may be due to the aggregation of small nanoparticles, especially at high AgNO3 concentration.


2021 ◽  
pp. 1-14
Author(s):  
N.U.H. Altaf ◽  
M.Y. Naz ◽  
S. Shukrullah ◽  
H.N. Bhatti

In this study, silver nanoparticles (AgNPs) were produced through an atmospheric pressure plasma reduction reaction and tested for photodegradation of methyl blue (MB) under sunlight exposure. The argon plasma born reactive species were used to reduce silver ions to AgNPs in the solution. Glucose, fructose and sucrose were also added in the solution to stabilize the growth process. The glucose stabilized reaction produced the smallest nanoparticles of 12 nm, while sucrose stabilized reaction produced relatively larger nanoparticles (14 nm). The nanoparticles exhibited rough morphology and narrow diameter distribution regardless of stabilizer type. The narrow diameter distribution and small band gap helped activating majority of nanoparticles at a single wavelength of light spectrum. The band gap energy of AgNPs varied from 2.22 eV to 2.41 eV, depending on the saccharide type. The photoluminescence spectroscopy of AgNPs produced emission peaks at 413 nm, 415 nm, and 418 nm. The photocatalytic potential of AgNP samples was checked by degrading MB dye under sunlight. The degradation reaction reached a saturation level of 98% after 60 min of light exposure.


Toxins ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Jensen Cherewyk ◽  
Taylor Grusie-Ogilvie ◽  
Barry Blakley ◽  
Ahmad Al-Dissi

Ergot sclerotia effect cereal crops intended for consumption. Ergot alkaloids within ergot sclerotia are assessed to ensure contamination is below safety standards established for human and animal health. Ergot alkaloids exist in two configurations, the R and S-epimers. It is important to quantify both configurations. The objective of this study was to validate a new ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for quantification of six R and six S-epimers of ergot alkaloids in hard red spring wheat utilizing deuterated lysergic acid diethylamide (LSD-D3) as an internal standard. Validation parameters such as linearity, limit of detection (LOD), limit of quantification (LOQ), matrix effects, recovery and precision were investigated. For the 12 epimers analyzed, low LOD and LOQ values were observed, allowing for the sensitive detection of ergot epimers. Matrix effects ranged between 101–113% in a representative wheat matrix. Recovery was 68.3–119.1% with an inter-day precision of <24% relative standard deviation (RSD). The validation parameters conform with previous studies and exhibit differences between the R and S-epimers which has been rarely documented. This new sensitive method allows for the use of a new internal standard and can be incorporated and applied to research or diagnostic laboratories.


Antibiotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 68 ◽  
Author(s):  
Mahsa Eshghi ◽  
Hamideh Vaghari ◽  
Yahya Najian ◽  
Mohammad Najian ◽  
Hoda Jafarizadeh-Malmiri ◽  
...  

Silver nanoparticles (Ag NPs) were synthesized using Juglans regia (J. regia) leaf extract, as both reducing and stabilizing agents through microwave irradiation method. The effects of a 1% (w/v) amount of leaf extract (0.1–0.9 mL) and an amount of 1 mM AgNO3 solution (15–25 mL) on the broad emission peak (λmax) and concentration of the synthesized Ag NPs solution were investigated using response surface methodology (RSM). Fourier transform infrared analysis indicated the main functional groups existing in the J. regia leaf extract. Dynamic light scattering, UV-Vis spectroscopy and transmission electron microscopy were used to characterize the synthesized Ag NPs. Fabricated Ag NPs with the mean particle size and polydispersity index and maximum concentration and zeta potential of 168 nm, 0.419, 135.16 ppm and −15.6 mV, respectively, were obtained using 0.1 mL of J. regia leaf extract and 15 mL of AgNO3. The antibacterial activity of the fabricated Ag NPs was assessed against both Gram negative (Escherichia coli) and positive (Staphylococcus aureus) bacteria and was found to possess high bactericidal effects.


2020 ◽  
Vol 5 (27) ◽  
pp. 8099-8105
Author(s):  
Zhongqin Guo ◽  
Haizhou Zhang ◽  
Xiaochun Ma ◽  
Xiaoming Zhou ◽  
Dong Liang ◽  
...  

2020 ◽  
Vol 831 ◽  
pp. 142-150
Author(s):  
Edgar Clyde R. Lopez ◽  
Michael Angelo Zafra ◽  
Jon Nyner L. Gavan ◽  
Emil David A. Villena ◽  
Francis Eric P. Almaquer ◽  
...  

Humic acid - functionalized silver nanoparticles (HA-AgNPs) were successfully synthesized and used to detect Cu (II) ions in aqueous solutions. The HA-AgNPs was shown to have an average hydrodynamic diameter of 101.4 nm and a polydispersity index of 0.447. The absorbance spectra of HA-AgNPs showed the characteristic local surface plasmon resonance (LSPR) peak of AgNPs at 408.3 nm. Addition of Cu (II) in the HA-AgNPs led to their agglomeration as evidenced by the change in their surface morphology and their corresponding optical absorbance spectra. The synthesized HA-AgNPs showed a strong linear response for Cu (II) concentrations in the range of 0.00 – 1.25 mM with a limit of detection (LoD) of 4.4428 ± 0.1091 mg L-1, a limit of quantification (LoQ) of 14.8094 ± 0.3636 mg L-1, and a limit of blank (LoB) of 0.1214 ± 0.0065 mg L-1. Statistical analysis showed that this calibration curve could be used to quantify Cu (II) concentrations within a 95% confidence level. Furthermore, HA-AgNPs was found to be selective for Cu (II) detection based on the selectivity study against common metal ions found in drinking water. This shows that the synthesized HA-AgNPs can be used as an environment-friendly colorimetric nanosensor for rapid and point-of-need quantification of Cu (II) ions in aqueous media.


2019 ◽  
Vol 31 (12) ◽  
pp. 2804-2810
Author(s):  
Anti Kolonial Prodjosantoso ◽  
Oktanio Sigit Prawoko ◽  
Maximus Pranjoto Utomo ◽  
Lis Permana Sari

In this article, the synthesis of silver nanoparticles through a reduction reaction process using Salacca zalacca extract is reported. The AgNPs were characterized using X-ray diffraction, transmission electron microscopy, Fourier transform infrared and UV-visible spectrophotometry methods. The AgNPs antibacterial activity was determined against of Gram-positive bacteria (Staphylococcus epidermidis) and Gram-negative bacteria (Escherichia coli). The main functional groups contained in Salacca zalacca extract are carbonyl, hydroxyl and nitrile groups, which are believed to reduce the silver ions to metal. The surface plasmon resonance values of brownish red AgNPs are in the range of 410 nm to 460 nm. The structure of AgNPs is face centered cubic (FCC). The diameter of silver nanoparticles crystallite is 14.2 ± 2.6 nm. The AgNPs growth inhibition zones of Escherichia coli and Staphylococcus epidermidis are 9.6 mm and 9.2 mm, respectively.


Sign in / Sign up

Export Citation Format

Share Document