plasma reduction
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 18)

H-INDEX

21
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5841
Author(s):  
Noor Ul Huda Altaf ◽  
Muhammad Yasin Naz ◽  
Shazia Shukrullah ◽  
Haq Nawaz Bhatti ◽  
Muhammad Irfan ◽  
...  

Various conventional approaches have been reported for the synthesis of nanomaterials without optimizing the role of synthesis parameters. The unoptimized studies not only raise the process cost but also complicate the physicochemical characteristics of the nanostructures. The liquid–plasma reduction with optimized synthesis parameters is an environmentally friendly and low-cost technique for the synthesis of a range of nanomaterials. This work is focused on the statistically optimized production of silver nanoparticles (AgNPs) by using a liquid–plasma reduction process sustained with an argon plasma jet. A simplex centroid design (SCD) was made in Minitab statistical package to optimize the combined effect of stabilizers on the structural growth and UV absorbance of AgNPs. Different combinations of glucose, fructose, sucrose and lactose stabilizers were tested at five different levels (−2, −1, 0, 1, 2) in SCD. The effect of individual and mixed stabilizers on AgNPs growth parameters was assumed significant when p-value in SCD is less than 0.05. A surface plasmon resonance band was fixed at 302 nm after SCD optimization of UV results. A bond stretching at 1633 cm−1 in FTIR spectra was assigned to C=O, which slightly shifts towards a larger wavelength in the presence of saccharides in the solution. The presence of FCC structured AgNPs with an average size of 15 nm was confirmed from XRD and EDX spectra under optimized conditions. The antibacterial activity of these nanoparticles was checked against Staphylococcus aureus and Escherichia coli strains by adopting the shake flask method. The antibacterial study revealed the slightly better performance of AgNPs against Staph. aureus strain than Escherichia coli.


2021 ◽  
pp. 1-14
Author(s):  
N.U.H. Altaf ◽  
M.Y. Naz ◽  
S. Shukrullah ◽  
H.N. Bhatti

In this study, silver nanoparticles (AgNPs) were produced through an atmospheric pressure plasma reduction reaction and tested for photodegradation of methyl blue (MB) under sunlight exposure. The argon plasma born reactive species were used to reduce silver ions to AgNPs in the solution. Glucose, fructose and sucrose were also added in the solution to stabilize the growth process. The glucose stabilized reaction produced the smallest nanoparticles of 12 nm, while sucrose stabilized reaction produced relatively larger nanoparticles (14 nm). The nanoparticles exhibited rough morphology and narrow diameter distribution regardless of stabilizer type. The narrow diameter distribution and small band gap helped activating majority of nanoparticles at a single wavelength of light spectrum. The band gap energy of AgNPs varied from 2.22 eV to 2.41 eV, depending on the saccharide type. The photoluminescence spectroscopy of AgNPs produced emission peaks at 413 nm, 415 nm, and 418 nm. The photocatalytic potential of AgNP samples was checked by degrading MB dye under sunlight. The degradation reaction reached a saturation level of 98% after 60 min of light exposure.


2021 ◽  
pp. 116971
Author(s):  
I.R.Souza Filho ◽  
Y. Ma ◽  
M. Kulse ◽  
D. Ponge ◽  
B. Gault ◽  
...  

2020 ◽  
Vol 39 ◽  
pp. 101157 ◽  
Author(s):  
Cesare Montesano ◽  
Sara Quercetti ◽  
Luca Matteo Martini ◽  
Giorgio Dilecce ◽  
Paolo Tosi

Sign in / Sign up

Export Citation Format

Share Document