scholarly journals Análisis de anomalías climáticas para la cuenca del río La Villa, Panamá, basado en los escenarios RCP

2020 ◽  
Vol 16 (1) ◽  
pp. 83-89
Author(s):  
Cassilda Saavedra

The use of climate change projections is crucial for mitigation and adaptation, which are the basis for creating resilience. However, access to these scientific products is scarce in Latin America and the existing studies lack of an appropriate resolution to analyze small but highly vulnerable regions, such as river basins for planning purposes.   La Villa river basin, Republic of Panama, is one of the watersheds of highest priority for adaptation to climate change. This study used downscaled projections from four climate models. The models are based on the Representative Concentration Pathways (RCP), presented in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change-IPCC. Results of this study suggest increases of the annual average precipitation in the watershed for the years 2050 and 2070. Meanwhile, maximum and minimum temperatures will increase an average of 1-2 ° C and near 4 ° C by the end of the 21st century. With these results, we observed that the use of small-scale climate projections in the RCP scenarios is feasible to determine the effects of climate change on small regions.

2013 ◽  
Vol 26 (10) ◽  
pp. 3394-3414 ◽  
Author(s):  
C. Adam Schlosser ◽  
Xiang Gao ◽  
Kenneth Strzepek ◽  
Andrei Sokolov ◽  
Chris E. Forest ◽  
...  

Abstract The growing need for risk-based assessments of impacts and adaptation to climate change calls for increased capability in climate projections: specifically, the quantification of the likelihood of regional outcomes and the representation of their uncertainty. Herein, the authors present a technique that extends the latitudinal projections of the 2D atmospheric model of the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM) by applying longitudinally resolved patterns from observations, and from climate model projections archived from exercises carried out for the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The method maps the IGSM zonal means across longitude using a set of transformation coefficients, and this approach is demonstrated in application to near-surface air temperature and precipitation, for which high-quality observational datasets and model simulations of climate change are available. The current climatology of the transformation coefficients is observationally based. To estimate how these coefficients may alter with climate, the authors characterize the climate models’ spatial responses, relative to their zonal mean, from transient increases in trace-gas concentrations and then normalize these responses against their corresponding transient global temperature responses. This procedure allows for the construction of metaensembles of regional climate outcomes, combining the ensembles of the MIT IGSM—which produce global and latitudinal climate projections, with uncertainty, under different global climate policy scenarios—with regionally resolved patterns from the archived IPCC climate model projections. This hybridization of the climate model longitudinal projections with the global and latitudinal patterns projected by the IGSM can, in principle, be applied to any given state or flux variable that has the sufficient observational and model-based information.


2010 ◽  
Vol 23 (23) ◽  
pp. 6143-6152 ◽  
Author(s):  
Adam A. Scaife ◽  
Tim Woollings ◽  
Jeff Knight ◽  
Gill Martin ◽  
Tim Hinton

Abstract Models often underestimate blocking in the Atlantic and Pacific basins and this can lead to errors in both weather and climate predictions. Horizontal resolution is often cited as the main culprit for blocking errors due to poorly resolved small-scale variability, the upscale effects of which help to maintain blocks. Although these processes are important for blocking, the authors show that much of the blocking error diagnosed using common methods of analysis and current climate models is directly attributable to the climatological bias of the model. This explains a large proportion of diagnosed blocking error in models used in the recent Intergovernmental Panel for Climate Change report. Furthermore, greatly improved statistics are obtained by diagnosing blocking using climate model data corrected to account for mean model biases. To the extent that mean biases may be corrected in low-resolution models, this suggests that such models may be able to generate greatly improved levels of atmospheric blocking.


2016 ◽  
Vol 8 (1) ◽  
pp. 142-164 ◽  
Author(s):  
Philbert Luhunga ◽  
Ladslaus Chang'a ◽  
George Djolov

The IPCC (Intergovernmental Panel on Climate Change) assessment reports confirm that climate change will hit developing countries the hardest. Adaption is on the agenda of many countries around the world. However, before devising adaption strategies, it is crucial to assess and understand the impacts of climate change at regional and local scales. In this study, the impact of climate change on rain-fed maize (Zea mays) production in the Wami-Ruvu basin of Tanzania was evaluated using the Decision Support System for Agro-technological Transfer. The model was fed with daily minimum and maximum temperatures, rainfall and solar radiation for current climate conditions (1971–2000) as well as future climate projections (2010–2099) for two Representative Concentration Pathways: RCP 4.5 and RCP 8.5. These data were derived from three high-resolution regional climate models, used in the Coordinated Regional Climate Downscaling Experiment program. Results showed that due to climate change future maize yields over the Wami-Ruvu basin will slightly increase relative to the baseline during the current century under RCP 4.5 and RCP 8.5. However, maize yields will decline in the mid and end centuries. The spatial distribution showed that high decline in maize yields are projected over lower altitude regions due to projected increase in temperatures in those areas.


2016 ◽  
Vol 29 (23) ◽  
pp. 8301-8316 ◽  
Author(s):  
Martin Leduc ◽  
René Laprise ◽  
Ramón de Elía ◽  
Leo Šeparović

Abstract Climate models developed within a given research group or institution are prone to share structural similarities, which may induce resembling features in their simulations of the earth’s climate. This assertion, known as the “same-center hypothesis,” is investigated here using a subsample of CMIP3 climate projections constructed by retaining only the models originating from institutions that provided more than one model (or model version). The contributions of individual modeling centers to this ensemble are first presented in terms of climate change projections. A metric for climate change disagreement is then defined to analyze the impact of typical structural differences (such as resolution, parameterizations, or even entire atmosphere and ocean components) on regional climate projections. This metric is compared to a present climate performance metric (correlation of error patterns) within a cross-model comparison framework in terms of their abilities to identify the same-center models. Overall, structural differences between the pairs of same-center models have a stronger impact on climate change projections than on how models reproduce the observed climate. The same-center criterion is used to detect agreements that might be attributable to model similarities and thus that should not be interpreted as implying greater confidence in a given result. It is proposed that such noninformative agreements should be discarded from the ensemble, unless evidence shows that these models can be assumed to be independent. Since this burden of proof is not generally met by the centers participating in a multimodel ensemble, the authors propose an ensemble-weighting scheme based on the assumption of institutional democracy to prevent overconfidence in climate change projections.


Author(s):  
Hudaverdi Gurkan ◽  
Vakhtang Shelia ◽  
Nilgun Bayraktar ◽  
Y. Ersoy Yildirim ◽  
Nebi Yesilekin ◽  
...  

Abstract The impact of climate change on agricultural productivity is difficult to assess. However, determining the possible effects of climate change is an absolute necessity for planning by decision-makers. The aim of the study was the evaluation of the CSM-CROPGRO-Sunflower model of DSSAT4.7 and the assessment of impact of climate change on sunflower yield under future climate projections. For this purpose, a 2-year sunflower field experiment was conducted under semi-arid conditions in the Konya province of Turkey. Rainfed and irrigated treatments were used for model analysis. For the assessment of impact of climate change, three global climate models and two representative concentration pathways, i.e. 4.5 and 8.5 were selected. The evaluation of the model showed that the model was able to simulate yield reasonably well, with normalized root mean square error of 1.3% for the irrigated treatment and 17.7% for the rainfed treatment, a d-index of 0.98 and a modelling efficiency of 0.93 for the overall model performance. For the climate change scenarios, the model predicted that yield will decrease in a range of 2.9–39.6% under rainfed conditions and will increase in a range of 7.4–38.5% under irrigated conditions. Results suggest that temperature increases due to climate change will cause a shortening of plant growth cycles. Projection results also confirmed that increasing temperatures due to climate change will cause an increase in sunflower water requirements in the future. Thus, the results reveal the necessity to apply adequate water management strategies for adaptation to climate change for sunflower production.


Water Policy ◽  
2013 ◽  
Vol 15 (S1) ◽  
pp. 26-50 ◽  
Author(s):  
Marc Jeuland ◽  
Nagaraja Harshadeep ◽  
Jorge Escurra ◽  
Don Blackmore ◽  
Claudia Sadoff

This paper presents the first basin-wide assessment of the potential impact of climate change on the hydrology and production of the Ganges system, undertaken as part of the World Bank's Ganges Strategic Basin Assessment. A series of modeling efforts – downscaling of climate projections, water balance calculations, hydrological simulation and economic optimization – inform the assessment. We find that projections of precipitation across the basin, obtained from 16 Intergovernmental Panel on Climate Change-recognized General Circulation Models are highly variable, and lead to considerable differences in predictions of mean flows in the main stem of the Ganges and its tributaries. Despite uncertainties in predicted future flows, they are not, however, outside the range of natural variability in this basin, except perhaps at the tributary or sub-catchment levels. We also find that the hydropower potential associated with a set of 23 large dams in Nepal remains high across climate models, largely because annual flow in the tributary rivers greatly exceeds the storage capacities of these projects even in dry scenarios. The additional storage and smoothing of flows provided by these infrastructures translates into enhanced water availability in the dry season, but the relative value of this water for the purposes of irrigation in the Gangetic plain, and for low flow augmentation to Bangladesh under climate change, is unclear.


Author(s):  
Syed Rouhullah Ali ◽  
Junaid N. Khan ◽  
Mehraj U. Din Dar ◽  
Shakeel Ahmad Bhat ◽  
Syed Midhat Fazil ◽  
...  

Aims: The study aimed at modeling the climate change projections for Ferozpur subcatchment of Jhelum sub-basin of Kashmir Valley using the SDSM model. Study Design: The study was carried out in three different time slices viz Baseline (1985-2015), Mid-century (2030-2059) and End-century (2070-2099). Place and Duration of Study: Division of Agricultural Engineering, SKUAST-K, Shalimar between August 2015 and July 2016. Methodology: Statistical downscaling model (SDSM) was applied in downscaling weather files (Tmax, Tminand precipitation). The study includes the calibration of the SDSM model by using Observed daily climate data (Tmax, Tmin and precipitation) of thirty one years and large scale atmospheric variables encompassing National Centers for Environmental Prediction (NCEP) reanalysis data, the validation of the model, and the outputs of downscaled scenario A2 of the Global Climate Model (GCM) data of Hadley Centre Coupled Model, Version 3 (HadCM3) model for the future. Daily Climate (Tmax, Tmin and precipitation) scenarios were generated from 1961 to 2099 under A2 defined by Intergovernmental Panel on Climate Change (IPCC). Results: The results showed that temperature and precipitation would increase by 0.29°C, 255.38 mm (30.97%) in MC (Mid-century) (2030-2059); and 0.67oC and 233.28 mm (28.29%) during EC (End-century) (2070-2099), respectively. Conclusion: The climate projections for 21st century under A2 scenario indicated that both mean annual temperature and precipitation are showing an increasing trend.


2020 ◽  
Vol 17 ◽  
pp. 191-208
Author(s):  
María P. Amblar-Francés ◽  
Petra Ramos-Calzado ◽  
Jorge Sanchis-Lladó ◽  
Alfonso Hernanz-Lázaro ◽  
María C. Peral-García ◽  
...  

Abstract. The Pyrenees, located in the transition zone of Atlantic and Mediterranean climates, constitute a paradigmatic example of mountains undergoing rapid changes in environmental conditions, with potential impact on the availability of water resources, mainly for downstream populations. High-resolution probabilistic climate change projections for precipitation and temperature are a crucial element for stakeholders to make well-informed decisions on adaptation to new climate conditions. In this line, we have generated high–resolution climate projections for 21st century by applying two statistical downscaling methods (regression for max and min temperatures, and analogue for precipitation) over the Pyrenees region in the frame of the CLIMPY project over a new high-resolution (5 km × 5 km) observational grid using 24 climate models from CMIP5. The application of statistical downscaling to such a high resolution observational grid instead of station data partially circumvent the problems associated to the non-uniform distribution of observational in situ data. This new high resolution projections database based on statistical algorithms complements the widely used EUROCORDEX data based on dynamical downscaling and allows to identify features that are dependent on the particular downscaling method. In our analysis, we not only focus on maximum and minimum temperatures and precipitation changes but also on changes in some relevant extreme indexes, being 1986–2005 the reference period. Although climate models predict a general increase in temperature extremes for the end of the 21st century, the exact spatial distribution of changes in temperature and much more in precipitation remains uncertain as they are strongly model dependent. Besides, for precipitation, the uncertainty associated to models can mask – depending on the zones- the signal of change. However, the large number of downscaled models and the high resolution of the used grid allow us to provide differential information at least at massif level. The impact of the RCP becomes significant for the second half of the 21st century, with changes – differentiated by massifs – of extreme temperatures and analysed associated extreme indexes for RCP8.5 at the end of the century.


2014 ◽  
Vol 5 (2) ◽  
pp. 1197-1219 ◽  
Author(s):  
K. Nishina ◽  
A. Ito ◽  
P. Falloon ◽  
A. D. Friend ◽  
D. J. Beerling ◽  
...  

Abstract. Changes to global net primary production (NPP), vegetation biomass carbon (VegC), and soil organic carbon (SOC) estimated by six global vegetation models (GVM) obtained from an Inter-Sectoral Impact Model Intercomparison Project study were examined. Simulation results were obtained using five global climate models (GCM) forced with four representative concentration pathway (RCP) scenarios. To clarify which component (emission scenarios, climate projections, or global vegetation models) contributes the most to uncertainties in projected global terrestrial C cycling by 2100, analysis of variance (ANOVA) and wavelet clustering were applied to 70 projected simulation sets. In the end of simulation period, the changes from the year of 2000 in all three variables considerably varied from net negative to positive values. ANOVA revealed that the main sources of uncertainty are different among variables and depend on the projection period. We determined that in the global VegC, and SOC projections, GVMs dominate uncertainties (60 and 90%, respectively) rather than climate driving scenarios, i.e., RCPs and GCMs. These results suggested that we don't have still enough resolution among each RCP scenario to evaluate climate change impacts on ecosystem conditions in global terrestrial C cycling. In addition, we found that the contributions of each uncertainty source were spatio-temporally heterogeneous and differed among the GVM variables. The dominant uncertainty source for changes in NPP and VegC varies along the climatic gradient. The contribution of GVM to the uncertainty decreases as the climate division gets cooler (from ca. 80% in the equatorial division to 40% in the snow climatic division). To evaluate the effects of climate change on ecosystems with practical resolution in RCP scenarios, GVMs require further improvement to reduce the uncertainties in global C cycling as much as, if not more than, GCMs. Our study suggests that the improvement of GVMs is a priority for the reduction of total uncertainties in projected C cycling for climate impact assessments.


Sign in / Sign up

Export Citation Format

Share Document