scholarly journals O uso de modelagem de distribuição de espécies para restauração florestal: Uma revisão sistemática

2021 ◽  
Vol 10 (8) ◽  
pp. e46610817158
Author(s):  
Luise Andrade Amaral ◽  
Robério Anastácio Ferreira ◽  
Renata Silva Mann

O objetivo deste trabalho foi realizar uma revisão sistemática da produção científica do uso da modelagem de distribuição de espécies para restauração florestal. As buscas de artigos científicos nas bases de dados Scopus e Web of Science para os últimos 15 anos foram realizadas no mês de dezembro de 2020 utilizando os termos: “ecological modeling” OR “biodiversity modeling” OR “predictive models” OR “niche modeling" OR "habitat models" AND “species distribution” OR "geographic distribution" OR “potential distribution” AND “forest restoration” OR “restoration ecology”. Para as análises estatísticas e gráficos dos dados brutos foi utilizado o pacote Bibliometrix do software R. Os dados brutos foram refinados por meio da seleção dos estudos que atenderam aos seguintes critérios: (i) estudos publicados em revistas científicas com fator de impacto igual ou superior a 2,0; (ii) estudos em que o título ou resumo mencionasse as palavras restauração florestal ou restauração ecológica; (iii) estudos que avaliaram o uso de modelagem de distribuição de espécies como auxílio aos projetos e programas de restauração florestal ou restauração ecológica. Foram encontrados 44 documentos publicados em 30 periódicos científicos com média de 3,91 publicações por ano; 18,55 citações por documento; 197 autores, sendo 3 documentos com autoria única. Assim pode-se concluir que o uso de modelagem de distribuição de espécies para restauração florestal no mundo é muito recente, e no Brasil é incipiente com baixos números de artigos publicados, mas apresenta tendência de crescimento por conta da sua significativa contribuição para melhorar as taxas de sucesso dos projetos de restauração.

Check List ◽  
2013 ◽  
Vol 9 (3) ◽  
pp. 692
Author(s):  
Sérgio Lopes de Oliveira ◽  
Joaquim Manoel da Silva ◽  
Ricardo Firmino de Sousa ◽  
Karina De Cassia Faria

Two male individuals of Mimon crenulatum were captured in the Mario Viana Municipal Park, at Nova Xavantina, eastern Mato Grosso, Brazil. This record expands the species’ distribution in West-Central Brazil, and represents the first record for the Cerrado of Mato Grosso. The specimens’ morphometric data are presented and compared with those of specimens found in other biomes. Two predictive geographic distribution models were generated, indicating the expansion of the potential distribution of the species.


2019 ◽  
Vol 20 (8) ◽  
Author(s):  
Angga Yudaputra ◽  
Inggit Puji Astuti ◽  
Wendell P. Cropper

Abstract. Yudaputra A, Pujiastuti I, Cropper Jr. WP. 2019. Comparing six different species distribution models with several subsets of environmental variables: predicting the potential current distribution of zebra Guettarda speciosa in Indonesia. Biodiversitas 20: 2321-2328. There are many algorithms of species distribution modeling that widely used to predict the potential distribution pattern of diverse organisms. Finding the best model in terms of predicting the potential distribution of many species remains a challenge. The objective of this study is to compare six different algorithms for predicting the potential current distribution pattern of Guettarda speciosa (zebra wood). The occurrence records of G. speciosa are derived from herbarium database, Bogor Botanic Gardens’s plant inventory database and direct field surveys through NKRI expedition.  Seven climatic variables and elevation data are extracted from global data. R open-source software is used to run those algorithms and QGIS is used to prepare the spatial data.  The result shows that MAXENT outperforms other predictive models with the highest AUC score 0.89, followed by SVM (0.87), RF (0.86), and GLM (0.82), DOMAIN (0.73), and BIOCLIM (0.62). Based on the AUC score, the four predictive models (MAXENT, SVM, RF, GLM) are categorized into good predictive models, indicating those are quite better to predict the potential current distribution pattern of G. speciosa. Whereas, DOMAIN is fair predictive model and BIOCLIM is poor predictive model. The predictive map derived from four models (MAXENT, SVM, RF, and GLM) shows almost similar appearance in predicting of potential current distribution of G. speciosa. The predictive map of current distribution would be useful to provide information regarding the potential habitat of G. speciosa across the landscape of Indonesia.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Gabriel Parra-Henao ◽  
Laura C. Suárez-Escudero ◽  
Sebastián González-Caro

Ecological niche modeling of Triatominae bugs allow us to establish the local risk of transmission of the parasiteTrypanosoma cruzi,which causes Chagas disease.This information could help to guide health authority recommendations on infection monitoring, prevention, and control. In this study, we estimated the geographic distribution of triatomine species in Colombia and identified the relationship between landscape structure and climatic factors influencing their occurrence. A total of 2451 records of 4 triatomine species (Panstrongylus geniculatus,Rhodnius pallescens,R. prolixus, andTriatoma maculata) were analyzed.The variables that provided more information to explain the ecologic niche of these vectors were related to precipitation, altitude, and temperature. We found that the species with the broadest potential geographic distribution wereP. geniculatus,R. pallescens, andR. prolixus. In general, the models predicted the highest occurrence probability of these vectors in the eastern slope of the Eastern Cordillera, the southern region of the Magdalena valley, and the Sierra Nevada of Santa Marta.


2014 ◽  
Vol 74 (2) ◽  
pp. 338-348 ◽  
Author(s):  
GR. Winck ◽  
P. Almeida-Santos ◽  
CFD. Rocha

In this study we attempted to access further information on the geographical distribution of the endangered lizard Liolaemus lutzae, estimating its potential distribution through the maximum entropy algorithm. For this purpose, we related its points of occurrence with matrices of environmental variables. After examining the correlation between environmental matrices, we selected 10 for model construction. The main variables influencing the current geographic distribution of L. lutzae were the diurnal temperature range and altitude. The species endemism seemed to be a consequence of a reduction of the original distribution area. Alternatively, the resulting model may reflect the geographic distribution of an ancestral lineage, since the model selected areas of occurrence of the two other species of Liolaemus from Brazil (L. arambarensis and L. occipitalis), all living in sand dune habitats and having psamophilic habits. Due to the high loss rate of habitat occupied by the species, the conservation and recovery of the remaining areas affected by human actions is essential.


2012 ◽  
Vol 87 (4) ◽  
pp. 400-408 ◽  
Author(s):  
E.A. Martínez-Salazar ◽  
T. Escalante ◽  
M. Linaje ◽  
J. Falcón-Ordaz

AbstractSpecies distribution modelling has been a powerful tool to explore the potential distribution of parasites in wildlife, being the basis of studies on biogeography.Vexillataspp. are intestinal nematodes found in several species of mammalian hosts, such as rodents (Geomyoidea) and hares (Leporidae) in the Nearctic and northern Neotropical regions. In the present study, we modelled the potential distribution ofVexillataspp. and their hosts, using exclusively species from the Geomyidae and Heteromyidae families, in order to identify their distributional patterns. Bioclimatic and topographic variables were used to identify and predict suitable habitats forVexillataand its hosts. Using these models, we identified that temperature seasonality is a significant environmental factor that influences the distribution of the parasite genus and its host. In particular, the geographical distribution is estimated to be larger than that predicted for its hosts. This suggests that the nematode has the potential to extend its geographical range and also its spectrum of host species. Increasing sample size and geographical coverage will contribute to recommendations for conservation of this host–parasite system.


Author(s):  
A. Townsend Peterson ◽  
Jorge Soberón ◽  
Richard G. Pearson ◽  
Robert P. Anderson ◽  
Enrique Martínez-Meyer ◽  
...  

This book deals with ecological niche modeling and species distribution modeling, two emerging fields that address the ecological, geographic, and evolutionary dimensions of geographic distributions of species. It provides a conceptual overview of the complex relationships between ecological niches and geographic distributions of species, both across space and (perhaps to a lesser degree) through time. The emphasis is on how that conceptual framework relates to ecological niche modeling and species distribution modeling, which the book argues are complementary and are most broadly applicable to diverse questions regarding the ecology and geography of biodiversity phenomena. Part I of the book introduces the conceptual framework for thinking about and discussing the distributional ecology of species, Part II is concerned with the data and tools that have been used in the early development of the field, and Part III focuses on real-world situations to which these tools have been applied.


2017 ◽  
Vol 16 (2) ◽  
pp. 225 ◽  
Author(s):  
Omar Machado Entiauspe-Neto ◽  
Márcia Ferret Renner ◽  
Conrado Mario-da-Rosa ◽  
Arthur Diesel Abegg ◽  
Daniel Loebmann ◽  
...  

The original description of Elapomorphus wuchereri Günther, 1861 included a drawing and brief comments about the morphology of three specimens; two of the latter belong to another species and the holotype is lost. Based on the discovery of new specimens, we redescribe Elapomorphus wuchereri and designate a neotype. We discuss the variation and the taxonomic history of the species, and based on the results of a species distribution model analysis (SDM), we describe the distribution, extent of occurrence, and conservation status.


2020 ◽  
Vol 91 (6) ◽  
pp. 669-687 ◽  
Author(s):  
Colin A. Chapman ◽  
Julio Cesar Bicca-Marques ◽  
Amy E. Dunham ◽  
Pengfei Fan ◽  
Peter J. Fashing ◽  
...  

With 60% of all primate species now threatened with extinction and many species only persisting in small populations in forest fragments, conservation action is urgently needed. But what type of action? Here we argue that restoration of primate habitat will be an essential component of strategies aimed at conserving primates and preventing the extinctions that may occur before the end of the century and propose that primates can act as flagship species for restoration efforts. To do this we gathered a team of academics from around the world with experience in restoration so that we could provide examples of why primate restoration ecology is needed, outline how primates can act as flagship species for restoration efforts of tropical forest, review what little is known about how primate populations respond to restoration efforts, and make specific recommendations of the next steps needed to make restoration of primate populations successful. We set four priorities: (1) academics must effectively communicate both the value of primates and the need for restoration; (2) more research is needed on how primates contribute to forest restoration; (3) more effort must be put into Masters and PhD level training for tropical country nationals; and finally (4) more emphasis is needed to monitor the responses of regenerating forest and primate populations where restoration efforts are initiated. We are optimistic that populations of many threatened species can recover, and extinctions can be prevented, but only if concerted large-scale efforts are made soon and if these efforts include primate habitat restoration.


Sign in / Sign up

Export Citation Format

Share Document