Studies on changes in muscle and liver glycogen in xylachlor induced fresh water teleostean fish, Channa marulius

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Raju Kumar ◽  
Moti Lal Gupta

Studies on Xylachlor (a weedicide) induced changes in plasma and muscle glycogen content have been made in an air breathing fresh water murrel fish, Channa marulius. It was observed that Xylachlor at all the concentrations (1.0 to 2.5ppm) caused marked effect on the levels of plasma as well as muscle glycogen of the fish under experiment causing a gradual decrease in the value as compared to control upto 96hrs of treatment in both sexes; thus indicating the deteriorated nutrient value of the fish exposed to xylachlor. The reason and mechanism of such changes have been discussed here.

1991 ◽  
Vol 71 (3) ◽  
pp. 1015-1019 ◽  
Author(s):  
M. F. Mottola ◽  
P. D. Christopher

To examine the effects of maternal exercise on liver and skeletal muscle glycogen storage, female Sprague-Dawley rats were randomly divided into control, nonpregnant runner, pregnant nonrunning control, pregnant runner, and prepregnant exercised control groups. The exercise consisted of treadmill running at 30 m/min on a 10 degree incline for 60 min, 5 days/wk. Pregnancy alone, on day 20 of gestation, decreased maternal liver glycogen content and increased red and white gastrocnemius muscle glycogen storage above control values (P less than 0.05). In contrast, exercise in nonpregnant animals augmented liver glycogen storage and also increased red and white gastrocnemius glycogen content (P less than 0.05). By combining exercise and pregnancy, the decrease in liver glycogen storage in the pregnant nonexercised condition was prevented in the pregnant runner group and more glycogen was stored in both the red and white portions of the gastrocnemius than all other groups (P less than 0.05). Fetal body weight was greatest (P less than 0.05) in the pregnant runner group and lowest (P less than 0.05) in the prepregnant exercise control group. These results demonstrate that chronic maternal exercise may change maternal glycogen storage patterns in the liver and skeletal muscle with some alteration in fetal outcome.


2012 ◽  
Vol 599 ◽  
pp. 48-51
Author(s):  
Xing Jun Xu ◽  
Shu Li Shao ◽  
Wei Wei Zhang ◽  
Wei Yu Wang ◽  
Xu Yan Li ◽  
...  

The sparrows for experimental materials were divided into 5 °C acclimation group, 30 °C acclimation group and control group. The content of liver glycogen and muscle glycogen were measured with sulfuric acid-anthrone colorimetric method after two weeks of acclimation. The results show that: When the temperature is 5 °C, the glycogen content was very significantly lower than the glycogen content of control group (p0.05); The change in glycogen content was extremely significant between the two temperature (p<0.01).


2019 ◽  
pp. 17-24
Author(s):  
Daphna Atar-Zwillenberg ◽  
Michael Atar ◽  
Gianni Morson ◽  
Udo Spornitz

The hormonal regulation of amphibian glycogen metabolism was studied in Xenopus laevis as a typical member of the anurans (tailless amphibians).The main focus of this study was given to the effects of various hormones on the glycogen/glucose balance in adult toads. We determined biochemically the liver and muscle glycogen contents as well as the blood glucose and lipid levels for a number of hormones and also diabetes inducing substances. Additionally, we examined ultrastructure changes in hepatocytes induced by the various treatments, and also investigated the activity of carbohydrate-relevant enzymes by histochemistry. With one exception, the liver glycogen content of Xenopus remained basically unchanged by the treatments or was even slightly enhanced. Only human chorionic gonadotropin, through which the vitellogenic response is triggered, prompts a significant decrease of liver glycogen in females. Under the same conditions the male liver glycogen content remained stable. Muscle glycogen contents were not affected by any of the treatments. Blood glucose and lipid levels on the other hand were elevated considerably in both sexes after application of either epinephrine or cortisol. The ultrastructural examination revealed a proliferation of Rough Endoplasmic Reticulum (RER) in hepatocytes from epinephrine treated toads of both sexes as well as from HCG treated females. By histochemistry, we detected an elevated glucose-6-phosphatase activity in the hepatocytes from toads treated with either epinephrine or cortisol. These treatments also led to enhanced glycogen phosphorylase activity in males, and to a slightly elevated glyceraldehyde-3-phosphate dehydrogenase activity in females. Our results show that the hepatic glycogen is extremely stable in adult Xenopus. Only vitellogenesis causes a marked utilization of glycogen. Since the blood glucose levels are elevated in epinephrine or cortisol treated toads without the liver glycogen being affected, we conclude that either protein and/or lipid metabolism are involved in carbohydrate metabolism in Xenopus laevis.


1959 ◽  
Vol 197 (5) ◽  
pp. 1059-1062 ◽  
Author(s):  
Samuel L. Leonard ◽  
William A. Wimsatt

Determinations of skeletal muscle and liver glycogen concentration and active a and total t phosphorylase activities were made in bats ( Myotis lucifugus) hibernating at 3°–5° and 20 hours after arousal at room temperature. After arousal, liver glycogen was decreased by half and muscle glycogen was increased over twofold. Concomitantly, muscle phosphorylase a was increased, phosphorylase t was unchanged and the ratio a/t was increased. In the liver, phosphorylase a, t and the ratios were increased upon arousal (calculated per unit of wet weight and per mg N). Epinephrine treatment was ineffective in the torpid hibernating bats, but in aroused bats, it decreased muscle and liver glycogen but increased muscle phosphorylase activity ratios only slightly. Histamine was ineffective in the aroused bats. Stimulating aroused bats to fly for short periods consistently resulted in lower muscle glycogen levels and in no change in muscle phosphorylase activity ratios. It is concluded that a) at least part of the increased muscle glycogen in the aroused bats comes from the liver, b) the changes in glycogen levels and phosphorylase activity are in some manner related and c) liver phosphorylase changes upon arousal, unlike that in muscle phosphorylase, involves an increase in total enzyme potential.


2000 ◽  
Vol 278 (1) ◽  
pp. E65-E75 ◽  
Author(s):  
Anna Casey ◽  
Rob Mann ◽  
Katie Banister ◽  
John Fox ◽  
Peter G. Morris ◽  
...  

This study investigated the effect of carbohydrate (CHO) ingestion on postexercise glycogen resynthesis, measured simultaneously in liver and muscle ( n = 6) by 13C magnetic resonance spectroscopy, and subsequent exercise capacity ( n = 10). Subjects cycled at 70% maximal oxygen uptake for 83 ± 8 min on six separate occasions. At the end of exercise, subjects ingested 1 g/kg body mass (BM) glucose, sucrose, or placebo (control). Resynthesis of glycogen over a 4-h period after treatment ingestion was measured on the first three occasions, and subsequent exercise capacity was measured on occasions four through six. No glycogen was resynthesized during the control trial. Liver glycogen resynthesis was evident after glucose (13 ± 8 g) and sucrose (25 ± 5 g) ingestion, both of which were different from control ( P < 0.01). No significant differences in muscle glycogen resynthesis were found among trials. A relationship between the CHO load (g) and change in liver glycogen content (g) was evident after 30, 90, 150, and 210 min of recovery ( r = 0.59–0.79, P< 0.05). Furthermore, a modest relationship existed between change in liver glycogen content (g) and subsequent exercise capacity ( r= 0.53, P < 0.05). However, no significant difference in mean exercise time was found (control: 35 ± 5, glucose: 40 ± 5, and sucrose: 46 ± 6 min). Therefore, 1 g/kg BM glucose or sucrose is sufficient to initiate postexercise liver glycogen resynthesis, which contributes to subsequent exercise capacity, but not muscle glycogen resynthesis.


2016 ◽  
Vol 120 (11) ◽  
pp. 1328-1334 ◽  
Author(s):  
Cas J. Fuchs ◽  
Javier T. Gonzalez ◽  
Milou Beelen ◽  
Naomi M. Cermak ◽  
Fiona E. Smith ◽  
...  

The purpose of this study was to assess the effects of sucrose vs. glucose ingestion on postexercise liver and muscle glycogen repletion. Fifteen well-trained male cyclists completed two test days. Each test day started with glycogen-depleting exercise, followed by 5 h of recovery, during which subjects ingested 1.5 g·kg−1·h−1 sucrose or glucose. Blood was sampled frequently and 13C magnetic resonance spectroscopy and imaging were employed 0, 120, and 300 min postexercise to determine liver and muscle glycogen concentrations and liver volume. Results were as follows: Postexercise muscle glycogen concentrations increased significantly from 85 ± 27 (SD) vs. 86 ± 35 mmol/l to 140 ± 23 vs. 136 ± 26 mmol/l following sucrose and glucose ingestion, respectively (no differences between treatments: P = 0.673). Postexercise liver glycogen concentrations increased significantly from 183 ± 47 vs. 167 ± 65 mmol/l to 280 ± 72 vs. 234 ± 81 mmol/l following sucrose and glucose ingestion, respectively (time × treatment, P = 0.051). Liver volume increased significantly over the 300-min period after sucrose ingestion only (time × treatment, P = 0.001). As a result, total liver glycogen content increased during postexercise recovery to a greater extent in the sucrose treatment (from 53.6 ± 16.2 to 86.8 ± 29.0 g) compared with the glucose treatment (49.3 ± 25.5 to 65.7 ± 27.1 g; time × treatment, P < 0.001), equating to a 3.4 g/h (95% confidence interval: 1.6-5.1 g/h) greater repletion rate with sucrose vs. glucose ingestion. In conclusion, sucrose ingestion (1.5 g·kg−1·h−1) further accelerates postexercise liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes.


2008 ◽  
Vol 60 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Biljana Miova ◽  
Suzana Dinevska-Kjovkarevska ◽  
S. Mitev ◽  
Mirsada Dervisevic

We investigated the influence of successive fasting for 24,48,72, and 96 h on some key enzymes and substrates of liver, kidney, and muscle in control and heat-acclimated (30days at 35 ? 1?C)rats. Short-term fasting (for 24 and 48 h)resulted in decrease of liver glycogen content, blood glucose level, and concentration of glucose-6-phosphate, as well as increase of glucose-6-phosphatase activity, regardless of the previous temperature of acclimation. During a period of prolonged fasting (for 72 and 96 h),there was a rebound of liver glycogen content only in animals kept at room temperature. Fasting induced increase of renal glycogen content in animals kept at room temperature and increase of renal glucose-6-phosphatase activity in both experimental groups. As for muscle metabolism, endogenous nutrition resulted in decrease of muscle glycogen content in heat-acclimated animals. Activity of muscle glycogen phosphorylase (a+b)was decreased in the control and increased in heat-acclimated animals. The obtained results indicate that the examined carbohydrate-related parameters show time-dependent changes during 4 days of fasting. Twenty-four- and 48-h fasting intensifies glycogenolytic processes, while 72- and 96-h fasting intensifies gluconeogenic processes, doing so to a lesser extent in heat-acclimated animals. The changes caused by the fasting were modified by acclimation to moderate heat, primarily in the liver and to a lesser extent in the kidney and muscle.


2000 ◽  
Vol 88 (6) ◽  
pp. 2151-2158 ◽  
Author(s):  
J. Lynne Walker ◽  
George J. F. Heigenhauser ◽  
Eric Hultman ◽  
Lawrence L. Spriet

This study examined the ability of well-trained eumenorrheic women to increase muscle glycogen content and endurance performance in response to a high-carbohydrate diet (HCD; ∼78% carbohydrate) compared with a moderate-carbohydrate diet (MD; ∼48% carbohydrate) when tested during the luteal phase of the menstrual cycle. Six women cycled to exhaustion at ∼80% maximal oxygen uptake (V˙o 2 max) after each of the randomly assigned diet and exercise-tapering regimens. A biopsy was taken from the vastus lateralis before and after exercise in each trial. Preexercise muscle glycogen content was high after the MD (625.2 ± 50.1 mmol/kg dry muscle) and 13% greater after the HCD (709.0 ± 44.8 mmol/kg dry muscle). Postexercise muscle glycogen was low after both trials (MD, 91.4 ± 34.5; HCD, 80.3 ± 19.5 mmol/kg dry muscle), and net glycogen utilization during exercise was greater after the HCD. The subjects also cycled longer at ∼80%V˙o 2 max after the HCD vs. MD (115:31 ± 10:47 vs. 106:35 ± 8:36 min:s, respectively). In conclusion, aerobically trained women increased muscle glycogen content in response to a high-dietary carbohydrate intake during the luteal phase of the menstrual cycle, but the magnitude was smaller than previously observed in men. The increase in muscle glycogen, and possibly liver glycogen, after the HCD was associated with increased cycling performance to volitional exhaustion at ∼80%V˙o 2 max.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1801-P
Author(s):  
KRISTINA WARDELMANN ◽  
JOSÉ PEDRO CASTRO ◽  
MICHAELA RATH ◽  
JÜRGEN WEIß ◽  
ANNETTE SCHUERMANN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document