Magnetization Transfer on T2-weighted Image: Magnetization Transfer Ratios in Normal Brain and CerebralLesions

1998 ◽  
Vol 39 (1) ◽  
pp. 15
Author(s):  
Myung Kwan Lim ◽  
Hong Gee Roh ◽  
Chang Hae Suh ◽  
Young Kook Cho ◽  
Hyung Jin Kim ◽  
...  
2004 ◽  
Vol 51 (2) ◽  
pp. 299-303 ◽  
Author(s):  
J.G. Sled ◽  
I. Levesque ◽  
A.C. Santos ◽  
S.J. Francis ◽  
S. Narayanan ◽  
...  

Author(s):  
J. Metuzals ◽  
D. F. Clapin ◽  
V. Montpetit

Information on the conformation of paired helical filaments (PHF) and the neurofilamentous (NF) network is essential for an understanding of the mechanisms involved in the formation of the primary lesions of Alzheimer's disease (AD): tangles and plaques. The structural and chemical relationships between the NF and the PHF have to be clarified in order to discover the etiological factors of this disease. We are investigating by stereo electron microscopic and biochemical techniques frontal lobe biopsies from patients with AD and squid giant axon preparations. The helical nature of the lesion in AD is related to pathological alterations of basic properties of the nervous system due to the helical symmetry that exists at all hierarchic structural levels in the normal brain. Because of this helical symmetry of NF protein assemblies and PHF, the employment of structure reconstruction techniques to determine the conformation, particularly the handedness of these structures, is most promising. Figs. 1-3 are frontal lobe biopsies.


2004 ◽  
Vol 71 ◽  
pp. 193-202 ◽  
Author(s):  
David R Brown

Prion diseases, also referred to as transmissible spongiform encephalopathies, are characterized by the deposition of an abnormal isoform of the prion protein in the brain. However, this aggregated, fibrillar, amyloid protein, termed PrPSc, is an altered conformer of a normal brain glycoprotein, PrPc. Understanding the nature of the normal cellular isoform of the prion protein is considered essential to understanding the conversion process that generates PrPSc. To this end much work has focused on elucidation of the normal function and activity of PrPc. Substantial evidence supports the notion that PrPc is a copper-binding protein. In conversion to the abnormal isoform, this Cu-binding activity is lost. Instead, there are some suggestions that the protein might bind other metals such as Mn or Zn. PrPc functions currently under investigation include the possibility that the protein is involved in signal transduction, cell adhesion, Cu transport and resistance to oxidative stress. Of these possibilities, only a role in Cu transport and its action as an antioxidant take into consideration PrPc's Cu-binding capacity. There are also more published data supporting these two functions. There is strong evidence that during the course of prion disease, there is a loss of function of the prion protein. This manifests as a change in metal balance in the brain and other organs and substantial oxidative damage throughout the brain. Thus prions and metals have become tightly linked in the quest to understand the nature of transmissible spongiform encephalopathies.


2007 ◽  
Vol 34 (S 2) ◽  
Author(s):  
FA Siebzehnrubl ◽  
I Jeske ◽  
D Müller ◽  
M Hildebrandt ◽  
E Hahnen ◽  
...  

Author(s):  
V. Deepika ◽  
T. Rajasenbagam

A brain tumor is an uncontrolled growth of abnormal brain tissue that can interfere with normal brain function. Although various methods have been developed for brain tumor classification, tumor detection and multiclass classification remain challenging due to the complex characteristics of the brain tumor. Brain tumor detection and classification are one of the most challenging and time-consuming tasks in the processing of medical images. MRI (Magnetic Resonance Imaging) is a visual imaging technique, which provides a information about the soft tissues of the human body, which helps identify the brain tumor. Proper diagnosis can prevent a patient's health to some extent. This paper presents a review of various detection and classification methods for brain tumor classification using image processing techniques.


2017 ◽  
pp. 8-17
Author(s):  
A. A. Ermakova ◽  
O. Yu. Borodin ◽  
M. Yu. Sannikov ◽  
S. D. Koval ◽  
V. Yu. Usov

Purpose: to investigate the diagnostic opportunities of contrast  magnetic resonance imaging with the effect of magnetization transfer effect in the diagnosis of focal metastatic lesions in the brain.Materials and methods.Images of contrast MRI of the brain of 16  patients (mean age 49 ± 18.5 years) were analysed. Diagnosis of  the direction is focal brain lesion. All MRI studies were carried out  using the Toshiba Titan Octave with magnetic field of 1.5 T. The  contrast agent is “Magnevist” at concentration of 0.2 ml/kg was  used. After contrasting process two T1-weighted studies were  performed: without T1-SE magnetization transfer with parameters of pulse: TR = 540 ms, TE = 12 ms, DFOV = 24 sm, MX = 320 × 224  and with magnetization transfer – T1-SE-MTC with parameters of pulse: ΔF = −210 Hz, FA(МТС) = 600°, TR = 700 ms, TE = 10 ms,  DFOV = 23.9 sm, MX = 320 x 224. For each detected metastatic  lesion, a contrast-to-brain ratio (CBR) was calculated. Comparative  analysis of CBR values was carried out using a non-parametric  Wilcoxon test at a significance level p < 0.05. To evaluate the  sensitivity and specificity of the techniques in the detection of  metastatic foci (T1-SE and T1-SE-MTC), ROC analysis was used. The sample is divided into groups: 1 group is foci ≤5 mm in size, 2  group is foci from 6 to 10 mm, and 3 group is foci >10 mm. Results.Comparative analysis of CBR using non-parametric Wilcoxon test showed that the values of the CBR on T1-weighted  images with magnetization transfer are significantly higher (p  <0.001) that on T1-weighted images without magnetization transfer. According to the results of the ROC analysis, sensitivity in detecting  metastases (n = 90) in the brain on T1-SE-MTC and T1-SE was  91.7% and 81.6%, specificity was 100% and 97.6%, respectively.  The accuracy of the T1-SE-MTC is 10% higher in comparison with  the technique without magnetization transfer. Significant differences (p < 0.01) between the size of the foci detected in post-contrast T1- weighted images with magnetization transfer and in post-contrast  T1-weighted images without magnetization transfer, in particular for  foci ≤5 mm in size, were found. Conclusions1. Comparative analysis of CBR showed significant (p < 0.001)  increase of contrast between metastatic lesion and white matter on  T1-SE-MTC in comparison with T1-SE.2. The sensitivity, specificity and accuracy of the magnetization transfer program (T1-SE-MTC) in detecting foci of  metastatic lesions in the brain is significantly higher (p < 0.01), relative to T1-SE.3. The T1-SE-MTC program allows detecting more foci in comparison with T1-SE, in particular foci of ≤5 mm (96% and 86%, respectively, with p < 0.05).


Sign in / Sign up

Export Citation Format

Share Document