scholarly journals GARMENT EMPLOYEE PRODUCTIVITY PREDICTION USING RANDOM FOREST

2021 ◽  
Vol 18 (1) ◽  
pp. 49-54
Author(s):  
Imanuel Balla ◽  
Sri Rahayu ◽  
Jajang Jaya Purnama

Clothing also means clothing is needed by humans. Besides the need for clothing in terms of function, clothing sales or business is also very potent. About 75 million people worldwide are directly involved in textiles, clothing, and footwear. In this case, a common problem in this industry is that the actual productivity of apparel employees sometimes fails to reach the productivity targets set by the authorities to meet production targets on time, resulting in huge losses. Experiments were conducted using the random forest model, linear regression, and neural network by looking for the values ​​of the correlation coefficient, MAE, and RMSE.  This aims to predict the productivity of garment employees with data mining techniques that apply machine learning and look for the minimum MAE value. The results of testing the proposed algorithm on the garment worker productivity dataset obtained the smallest MAE, namely the random forest algorithm, namely 0.0787, linear regression 0.1081, and 0.1218 neural networks

Author(s):  
Qin Song ◽  
Yu-Jun Zheng ◽  
Jun Yang

Morbidity prediction can be useful in improving the effectiveness and efficiency of medical services, but accurate morbidity prediction is often difficult because of the complex relationships between diseases and their influencing factors. This study investigates the effects of food contamination on gastrointestinal-disease morbidities using eight different machine-learning models, including multiple linear regression, a shallow neural network, and three deep neural networks and their improved versions trained by an evolutionary algorithm. Experiments on the datasets from ten cities/counties in central China demonstrate that deep neural networks achieve significantly higher accuracy than classical linear-regression and shallow neural-network models, and the deep denoising autoencoder model with evolutionary learning exhibits the best prediction performance. The results also indicate that the prediction accuracies on acute gastrointestinal diseases are generally higher than those on other diseases, but the models are difficult to predict the morbidities of gastrointestinal tumors. This study demonstrates that evolutionary deep-learning models can be utilized to accurately predict the morbidities of most gastrointestinal diseases from food contamination, and this approach can be extended for the morbidity prediction of many other diseases.


2020 ◽  
Author(s):  
Qing Wu ◽  
Fatma Nasoz ◽  
Jongyun Jung ◽  
Bibek Bhattarai

AbstractBone mineral density (BMD) is a highly heritable trait with heritability ranging from 50% to 80%. Numerous BMD-associated Single Nucleotide Polymorphisms (SNPs) were discovered by GWAS and GWAS meta-analysis. However, several studies found that combining these highly significant SNPs together only explained a small percentage of BMD variance. This inconsistency may be caused by limitations of the linear regression approaches employed because these traditional approaches lack the flexibility and the adequacy to model complex gene interactions and regulations. Hence, we developed various machine learning models of genomic data and ran experiments to identify the best machine learning model for BMD prediction at three different sites. We used genomic data of Osteoporotic Fractures in Men (MrOS) cohort Study (N=5,133) for analysis. Genotype imputation was conducted at the Sanger Imputation Server. A total of 1,103 BMD-associated SNPs were identified and corresponding weighted genetic risk scores were calculated. Genetic variants, as well as age and other traditional BMD predictors, were included for modeling. Data were normalized and were split into a training set (80%) and a test set (20%). BMD prediction models were built separately by random forest, gradient boosting, and neural network algorithms. Linear regression was used as a reference model. We applied the non-parametric Wilcoxon signed-rank tests for the measurement of MSE in each model for the pair-wise model comparison. We found that gradient boosting shows the lowest MSE for each BMD site and a prediction model built using the machine learning models achieves improved performance when a large number of SNPs are included in the models. With the predictors of phenotype covariate + 1,103 SNPs, all of the models were statistically significant except neural network vs. random forest at femoral neck BMD and gradient boosting vs. random forest at total hip BMD.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Glen Williams ◽  
Nicholas A. Meisel ◽  
Timothy W. Simpson ◽  
Christopher McComb

Abstract Machine learning can be used to automate common or time-consuming engineering tasks for which sufficient data already exist. For instance, design repositories can be used to train deep learning algorithms to assess component manufacturability; however, methods to determine the suitability of a design repository for use with machine learning do not exist. We provide an initial investigation toward identifying such a method using “artificial” design repositories to experimentally test the extent to which altering properties of the dataset impacts the assessment precision and generalizability of neural networks trained on the data. For this experiment, we use a 3D convolutional neural network to estimate quantitative manufacturing metrics directly from voxel-based component geometries. Additive manufacturing (AM) is used as a case study because of the recent growth of AM-focused design repositories such as GrabCAD and Thingiverse that are readily accessible online. In this study, we focus only on material extrusion, the dominant consumer AM process, and investigate three AM build metrics: (1) part mass, (2) support material mass, and (3) build time. Additionally, we compare the convolutional neural network accuracy to that of a baseline multiple linear regression model. Our results suggest that training on design repositories with less standardized orientation and position resulted in more accurate trained neural networks and that orientation-dependent metrics were harder to estimate than orientation-independent metrics. Furthermore, the convolutional neural network was more accurate than the baseline linear regression model for all build metrics.


2021 ◽  
Vol 10 (02) ◽  
pp. 07-11
Author(s):  
Kanakaveti Narasimha Dheeraj ◽  
Goutham. R. J ◽  
Arthi. L

Agriculture is said to be the backbone of the economy. Farmers toil hard with different kinds of crops to make good and healthy food for the country. There are more existing systems but uses outdated machine-learning techniques based on RNN( Recurrent neural network) which makes the process slower and more time-consuming. Here We are proposing a new CNN(Convolutional neural network ) based system which is fast and gives accurate results within seconds. CNN is power-efficient and is more suitable for real-time implementation. In this project, we use CNN algorithms which is very much better than the RNN algorithms used in the existing system.More parameters will be taken for the consideration of prediction in the proposed system. And we use Random Forest Regression, Multiple Linear Regression


2020 ◽  
Author(s):  
Sara Santamaria Aguilar ◽  
Thomas Wahl

<p>Future changes in the wind wave climate due to atmospheric changes can intensify present erosion and flood risk. Knowledge on both mean and extreme wave climate is necessary for understanding changes in sediment dynamics and flood events at the coastline. In order to assess potential wave changes, ensemble nearshore wave projections are required for covering   the entire range of wave conditions and also the large uncertainties related to future climate states. However, nearshore wave projections are not available for most coastal regions due to the excessive computational effort required for dynamically downscaling ensemble offshore wave data. As a result, the large relative contribution of waves to coastal flooding and erosion is commonly omitted in the assessment of those hazards. In this context, machine learning models can be an efficient tool for downscaling ensemble global wave projections if they are able to accurately simulate the non-linear processes of wave propagation due to their low computational requirements. Here, we analyse the performance of three machine learning methods, namely random forest, multivariate adaptive regression splines and artificial neural networks, for downscaling the wave climate along the coast of Florida. We further compare the performance of these three models to the multiple linear regression, which is a statistical model frequently used, although it does not account for the non-linearities associated with wave propagation processes. We find that the three machine learning models perform better than the multiple linear regression for all wave parameters (significant wave height, peak and mean periods, direction) along the entire coastline of Florida, which highlights the ability of these models to reproduce the non-linear wave propagation processes. Specifically, random forest shows the best performance and the lowest computational training times. In addition, this model shows a remarkably good performance in simulating the wave extreme events compared to the other models. By following a tree bagging approach, random forest can also provide confidence intervals and reduce the tuning process. The latter is one of the main disadvantages of the artificial neural networks, which also show a high performance for wave downscaling but require more training and tuning effort. Although the significant wave height and the periods can be simulated with very high accuracy (R<sup>2</sup> higher than 0.9 and 0.8 respectively), the wave direction is poorly simulated by all models due to its circular behaviour. We find that a transformation of the direction into sine and cosine can improve the model performance. Finally, we downscale an ensemble of global wave projections along the coast of Florida and assess potential changes in the wave climate of this region.   </p>


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 243
Author(s):  
Małgorzata Smuga-Kogut ◽  
Tomasz Kogut ◽  
Roksana Markiewicz ◽  
Adam Słowik

The study objective was to model and predict the bioethanol production process from lignocellulosic biomass based on an example of empirical study results. Two types of algorithms were used in machine learning: artificial neural network (ANN) and random forest algorithm (RF). Data for the model included results of studying bioethanol production with the use of ionic liquids (ILs) and different enzymatic preparations from the following biomass types: buckwheat straw and biomass from four wastelands, including a mixture of various plants: stems of giant miscanthus, common nettle, goldenrod, common broom, fireweed, and hay (a mix of grasses). The input variables consisted of different ionic liquids (imidazolium and ammonium), enzymatic preparations, enzyme doses, time and temperature of pretreatment, and type of yeast for alcoholic fermentation. The output value was the bioethanol concentration. The multilayer perceptron (MLP) was used in the artificial neural networks. Two model types were created; the training dataset comprised 120 vectors (14 elements for Model 1 and 11 elements for Model 2). Assessment of the optimum random forest was carried out using the same division of experimental points (two random datasets, containing 2/3 for training and 1/3 for testing) and the same criteria used for the artificial neural network models. Data for mugwort and hemp were used for validation. In both models, the coefficient of determination for neural networks was <0.9, while for RF it oscillated around 0.95. Considering the fairly large spread of the determination coefficient, two hybrid models were generated. The use of the hybrid approach in creating models describing the present bioethanol production process resulted in an increase in the fit of the model to R2 = 0.961. The hybrid model can be used for the initial classification of plants without the necessity to perform lengthy and expensive research related to IL-based pretreatment and further hydrolysis; only their lignocellulosic composition results are needed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Rahel Jedamski ◽  
Jérémy Epp

Non-destructive determination of workpiece properties after heat treatment is of great interest in the context of quality control in production but also for prevention of damage in subsequent grinding process. Micromagnetic methods offer good possibilities, but must first be calibrated with reference analyses on known states. This work compares the accuracy and reliability of different calibration methods for non-destructive evaluation of carburizing depth and surface hardness of carburized steel. Linear regression analysis is used in comparison with new methods based on artificial neural networks. The comparison shows a slight advantage of neural network method and potential for further optimization of both approaches. The quality of the results can be influenced, among others, by the number of teaching steps for the neural network, whereas more teaching steps does not always lead to an improvement of accuracy for conditions not included in the initial calibration.


2020 ◽  
Vol 15 (S359) ◽  
pp. 40-41
Author(s):  
L. M. Izuti Nakazono ◽  
C. Mendes de Oliveira ◽  
N. S. T. Hirata ◽  
S. Jeram ◽  
A. Gonzalez ◽  
...  

AbstractWe present a machine learning methodology to separate quasars from galaxies and stars using data from S-PLUS in the Stripe-82 region. In terms of quasar classification, we achieved 95.49% for precision and 95.26% for recall using a Random Forest algorithm. For photometric redshift estimation, we obtained a precision of 6% using k-Nearest Neighbour.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 771
Author(s):  
Toshiya Arakawa

Mammalian behavior is typically monitored by observation. However, direct observation requires a substantial amount of effort and time, if the number of mammals to be observed is sufficiently large or if the observation is conducted for a prolonged period. In this study, machine learning methods as hidden Markov models (HMMs), random forests, support vector machines (SVMs), and neural networks, were applied to detect and estimate whether a goat is in estrus based on the goat’s behavior; thus, the adequacy of the method was verified. Goat’s tracking data was obtained using a video tracking system and used to estimate whether they, which are in “estrus” or “non-estrus”, were in either states: “approaching the male”, or “standing near the male”. Totally, the PC of random forest seems to be the highest. However, The percentage concordance (PC) value besides the goats whose data were used for training data sets is relatively low. It is suggested that random forest tend to over-fit to training data. Besides random forest, the PC of HMMs and SVMs is high. However, considering the calculation time and HMM’s advantage in that it is a time series model, HMM is better method. The PC of neural network is totally low, however, if the more goat’s data were acquired, neural network would be an adequate method for estimation.


Sign in / Sign up

Export Citation Format

Share Document