scholarly journals Modelling New Zealand Road Deaths

2021 ◽  
Vol 32 (2) ◽  
pp. 4-15
Author(s):  
Colin Morrison ◽  
Ernest Albuquerque

New Zealand is developing an integrated road safety intervention logic model. This paper describes a core component of this wider strategic research carried out in 2018: a baseline model that extrapolates New Zealand road deaths to 2025. The baseline will provide context to what Waka Kotahi NZ Transport Agency is trying to achieve. It offers a way of understanding what impact interventions have in acting with and against external influences affecting road deaths and serious trauma. The baseline model considers autonomous change at a macro level given social and economic factors that influence road deaths. Identifying and testing relationships and modelling these explanatory variables clarifies the effect of interventions. Time-series forecasting begins by carefully collecting and rigorously analysing sequences of discrete-time data, then developing an appropriate model to describe the inherent structure of the series. Successful time-series forecasting depends on fitting an appropriate model to the underlying time-series. Several time-series models were investigated in understanding road deaths in the New Zealand context. In the final modelling an autoregressive integrated moving average (ARIMA) model and two differing autoregressive distributed lag (ARDL) models were developed. A preferred model was identified. This ARDL model was used to project road deaths to 2025.

Author(s):  
Debasis Mithiya ◽  
Lakshmikanta Datta ◽  
Kumarjit Mandal

Oilseeds have been the backbone of India’s agricultural economy since long. Oilseed crops play the second most important role in Indian agricultural economy, next to food grains, in terms of area and production. Oilseeds production in India has increased with time, however, the increasing demand for edible oils necessitated the imports in large quantities, leading to a substantial drain of foreign exchange. The need for addressing this deficit motivated a systematic study of the oilseeds economy to formulate appropriate strategies to bridge the demand-supply gap. In this study, an effort is made to forecast oilseeds production by using Autoregressive Integrated Moving Average (ARIMA) model, which is the most widely used model for forecasting time series. One of the main drawbacks of this model is the presumption of linearity. The Group Method of Data Handling (GMDH) model has also been applied for forecasting the oilseeds production because it contains nonlinear patterns. Both ARIMA and GMDH are mathematical models well-known for time series forecasting. The results obtained by the GMDH are compared with the results of ARIMA model. The comparison of modeling results shows that the GMDH model perform better than the ARIMA model in terms of mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). The experimental results of both models indicate that the GMDH model is a powerful tool to handle the time series data and it provides a promising technique in time series forecasting methods.


Author(s):  
Arunkumar P. M. ◽  
Lakshmana Kumar Ramasamy ◽  
Amala Jayanthi M.

A novel corona virus, COVID-19 is spreading across different countries in an alarming proportion and it has become a major threat to the existence of human community. With more than eight lakh death count within a very short span of seven months, this deadly virus has affected more than 24 million people across 213 countries and territories around the world. Time-series analysis, modeling and forecasting is an important research area that explores the hidden insights from larger set of time-bound data for arriving better decisions. In this work, data analysis on COVID-19 dataset is performed by comparing the top six populated countries in the world. The data used for the evaluation is taken for a time period from 22nd January 2020 to 23rd August 2020.A novel time-series forecasting approach based on Auto-regressive integrated moving average (ARIMA) model is also proposed. The results will help the researchers from medical and scientific community to gauge the trend of the disease spread and improvise containment strategies accordingly.


A novel corona virus, COVID-19 is spreading across different countries in an alarming proportion and it has become a major threat to the existence of human community. With more than eight lakh death count within a very short span of seven months, this deadly virus has affected more than 24 million people across 213 countries and territories around the world. Time-series analysis, modeling and forecasting is an important research area that explores the hidden insights from larger set of time-bound data for arriving better decisions. In this work, data analysis on COVID-19 dataset is performed by comparing the top six populated countries in the world. The data used for the evaluation is taken for a time period from 22nd January 2020 to 23rd August 2020.A novel time-series forecasting approach based on Auto-regressive integrated moving average (ARIMA) model is also proposed. The results will help the researchers from medical and scientific community to gauge the trend of the disease spread and improvise containment strategies accordingly.


2021 ◽  
Vol 16 (1) ◽  
pp. 25-35
Author(s):  
Samir K. Safi ◽  
Olajide Idris Sanusi

The Auto Regressive Integrated Moving Average (ARIMA) model seems not to easily capture the nonlinear patterns exhibited by the 2019 novel coronavirus (COVID-19) in terms of daily confirmed cases. As a result, Artificial Neural Network (ANN) and Error, Trend, and Seasonality (ETS) modeling have been successfully applied to resolve problems with nonlinear estimation. Our research suggests that it would be ideal to use a single model of ETS or ARIMA for COVID-19 time series forecasting rather than a complicated Hybrid model that combines several models. We compare the forecasting performance of these models using real, worldwide, daily COVID-19 data for the period between January 22, 2020 till June 19, and June 20 till January 2, 2021 which marks two stages, each stage indicating the first and the second wave respectively. We discuss various forecasting approaches and the criteria for choosing the best forecasting technique. The best forecasting model selected was compared using the forecasting assessment criterion known as Mean Absolute Error (MAE). The empirical results show that the ETS and ARIMA models outperform the ANN and Hybrid models. The main finding from the ETS and ARIMA models analysis indicate that the magnitude of the increase in total confirmed cases over time is declining and the percentage change in the death rate is also on the decline. Our results shows that the chosen forecaste models are consistent during the first and second wave of of the pandemic. These forecasts are encouraging as the world struggles to contain the spread of COVID-19. This may be the result of the social distancing measures mandated by governments worldwide.


2020 ◽  
Author(s):  
Viswa Chaitanya Chandu

Abstract: Background: As economic burden makes it increasingly difficult for countries to continue imposing control measures, it is vital for countries to make predictions using time series forecasting before making decisions on lifting the restrictions. Aim: Since apparent differences were noted in the disease transmission between the two South East Asian countries of India and Thailand, the study aims to draw comparative account of the progression of COVID 19 in near future between these two countries. Methods: The study used data of COVID 19 confirmed cases in India and Thailand from WHO COVID 19 situation reports during the time period between 25th March, 2020 and 14th May, 2020. After determination of stationarity in the data and differencing, observation of autocorrelation function (ACF) and partial autocorrelation function (PACF), Auto Regressive Integrated Moving Average (ARIMA) (2,2,1) model was used to forecast the COVID 19 confirmed cases in both these countries for two weeks (i.e. 28th May, 2020). IBM SPSS version 20.0 software was used for data analysis. Results: The study demonstrated a possible increasing trend in number of COVID 19 cases in India in the coming two weeks with an estimated point forecast of 1,28,772 (95% CI 115023 to 142520) by 28th May, 2020. A stationary phase was forecasted for Thailand with a difference of only 43 cases between 14th May (the last case of input data) and 28th May. Conclusion: The time series forecasting employed in the present study warrants thorough preparation on part of the Indian health care system and authorities and calls for caution with regard to decisions made on lifting the control measures. The difference in the time series forecasting between these two South East Asian countries also highlights the need for strengthening of public health systems.


2018 ◽  
Vol 12 (11) ◽  
pp. 309 ◽  
Author(s):  
Mohammad Almasarweh ◽  
S. AL Wadi

Banking time series forecasting gains a main rule in finance and economics which has encouraged the researchers to introduce a fit models in forecasting accuracy. In this paper, the researchers present the advantages of the autoregressive integrated moving average (ARIMA) model forecasting accuracy. Banking data from Amman stock market (ASE) in Jordan was selected as a tool to show the ability of ARIMA in forecasting banking data. Therefore, Daily data from 1993 until 2017 is used for this study. As a result this article shows that the ARIMA model has significant results for short-term prediction. Therefore, these results will be helpful for the investments.


2021 ◽  
Vol 17 (5) ◽  
pp. 609-620
Author(s):  
Wan Imanul Aisyah Wan Mohamad Nawi ◽  
Muhamad Safiih Lola ◽  
Razak Zakariya ◽  
Nurul Hila Zainuddin ◽  
Abd. Aziz K. Abd Hamid ◽  
...  

Forecasting is a very effortful task owing to its features which simultaneously contain linear and nonlinear patterns. The Autoregressive Integrated Moving Average (ARIMA) model has been one the most widely utilized linear model in time series forecasting. Unfortunately, the ARIMA model cannot effortlessly handle nonlinear patterns alone. Thus, Support Vector Machine (SVM) model is introduced to solve nonlinear behavior in the datasets with high variance and uncertainty. The purposes of this study are twofold. First, to propose a hybrid ARIMA models using SVM. Secondly, to test the effectiveness of the proposed hybrid model using sea surface temperature (SST) data. Our investigation is based on two well-known real datasets, i.e., SST (modis) and in-situ SST (hycom). Statistical measurement such as MAE, MAPE, MSE, and RMSE are carried out to investigate the efficacy of the proposed models as compared to the previous ARIMA and SVMs models. The empirical results reveal that the proposed models produce lesser MAE, MAPE, MSE, and RMSE values in comparison to the single ARIMA and SVMs models. In additional, ARIMA-SVM are much better than compared to the existing models since the forecasting values are closer to the actual value. Therefore, we conclude that the presented models can be used to generate superior predicting values in time series forecasting with a way higher forecast precision.


2019 ◽  
Vol 10 (08) ◽  
pp. 20592-21600
Author(s):  
Gbadebo Salako ◽  
Adejumo Musibau Ojo ◽  
Jaji Ayobami Francis

This study empirically investigates the effects of macroeconomic disequilibrium on educational development in Nigeria. The study employed time series data between 1980 and 2017. Autoregressive Distributed Lag method of estimation was employed. The result revealed that the variables stationarity test were mixed between the first difference I(I) and level I(0). The cointegration result shows that there exist long run relationship between the variables. The result revealed that Balance of payment, Poverty, Debt rate inflation and unemployment exhibited negative relationship with educational development. The estimation result showed that all explanatory variables account for 88% variation of educational development in Nigeria. It is therefore recommended that government should fast track policies that can stabilize inflation and exchange rate in the country. Also, Policies must be formulated to reduce poverty and unemployment.


2017 ◽  
Vol 19 (2) ◽  
pp. 261-281 ◽  
Author(s):  
Sahbi Boubaker

In this paper, a modeling-identification approach for the monthly municipal water demand system in Hail region, Saudi Arabia, is developed. This approach is based on an auto-regressive integrated moving average (ARIMA) model tuned by the particle swarm optimization (PSO). The ARIMA (p, d, q) modeling requires estimation of the integer orders p and q of the AR and MA parts; and the real coefficients of the model. More than being simple, easy to implement and effective, the PSO-ARIMA model does not require data pre-processing (original time-series normalization for artificial neural network (ANN) or data stationarization for traditional stochastic time-series (STS)). Moreover, its performance indicators such as the mean absolute percentage error (MAPE), coefficient of determination (R2), root mean squared error (RMSE) and average absolute relative error (AARE) are compared with those of ANN and STS. The obtained results show that the PSO-ARIMA outperforms the ANN and STS approaches since it can optimize simultaneously integer and real parameters and provides better accuracy in terms of MAPE (5.2832%), R2 (0.9375), RMSE (2.2111 × 105m3) and AARE (5.2911%). The PSO-ARIMA model has been implemented using 69 records (for both training and testing). The results can help local water decision makers to better manage the current water resources and to plan extensions in response to the increasing need.


Sign in / Sign up

Export Citation Format

Share Document