A coupled surface–subsurface modeling framework to assess the impact of climate change on freshwater wetlands

2015 ◽  
Vol 66 (3) ◽  
pp. 211-228 ◽  
Author(s):  
X Yu ◽  
G Bhatt ◽  
CJ Duffy ◽  
DH Wardrop ◽  
RG Najjar ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Åkesson ◽  
Alva Curtsdotter ◽  
Anna Eklöf ◽  
Bo Ebenman ◽  
Jon Norberg ◽  
...  

AbstractEco-evolutionary dynamics are essential in shaping the biological response of communities to ongoing climate change. Here we develop a spatially explicit eco-evolutionary framework which features more detailed species interactions, integrating evolution and dispersal. We include species interactions within and between trophic levels, and additionally, we incorporate the feature that species’ interspecific competition might change due to increasing temperatures and affect the impact of climate change on ecological communities. Our modeling framework captures previously reported ecological responses to climate change, and also reveals two key results. First, interactions between trophic levels as well as temperature-dependent competition within a trophic level mitigate the negative impact of climate change on biodiversity, emphasizing the importance of understanding biotic interactions in shaping climate change impact. Second, our trait-based perspective reveals a strong positive relationship between the within-community variation in preferred temperatures and the capacity to respond to climate change. Temperature-dependent competition consistently results both in higher trait variation and more responsive communities to altered climatic conditions. Our study demonstrates the importance of species interactions in an eco-evolutionary setting, further expanding our knowledge of the interplay between ecological and evolutionary processes.


2015 ◽  
Vol 2 (2) ◽  
pp. 49-64 ◽  
Author(s):  
Leszek Kuchar ◽  
Wiwiana Szalińska ◽  
Sławomir Iwański ◽  
Leszek Jelonek

2021 ◽  
Vol 38 (4) ◽  
pp. 1118-1124
Author(s):  
Sayed Mohibul HOSSEN ◽  
◽  
Mohd Tahir ISMAIL ◽  
Mosab I. TABASH ◽  
Suhaib ANAGREH ◽  
...  

In this study, we aim to highlight the impact of climate change as well as seasonality on tourist’s arrival in Bangladesh. The SANCOVA modeling framework modified by the ANCOVA model is used to examine the impact of climate change on tourists’ arrivals. The results show seasonality has a 91% effect on tourist’s arrival in Bangladesh. The maximum and minimum variation of climatic variables on tourists’ arrival in Bangladesh is rainfall and humidity, respectively. The winter and summer seasons have similar and more impact on tourist’s arrival in Bangladesh. Our findings indicate that the tourism industry of Bangladesh is more vulnerable to seasonal variation than the overall economy. The present study has significant implications for both policymakers and tourisms destination alike to plan for tourism in Bangladesh.


2020 ◽  
Author(s):  
Anna Åkesson ◽  
Alva Curtsdotter ◽  
Anna Eklöf ◽  
Bo Ebenman ◽  
Jon Norberg ◽  
...  

AbstractEco-evolutionary dynamics are essential in shaping the biological response of communities to ongoing climate change. Here we develop a spatially explicit eco-evolutionary framework which integrates evolution, dispersal, and species interactions within and between trophic levels. This allows us to analyze how these processes interact to shape species- and community-level dynamics under climate change. Additionally, we incorporate the heretofore unexplored feature that species interactions themselves might change due to increasing temperatures and affect the impact of climate change on ecological communities. The new modeling framework captures previously reported ecological responses to climate change, and also reveals two new key results. First, interactions between trophic levels as well as temperature-dependent competition within a trophic level mitigate the negative impact of climate change on global biodiversity, emphasizing the importance of understanding biotic interactions in shaping climate change impact. Second, using a trait-based perspective, we found a strong negative relationship between the within-community variation in preferred temperatures and the capacity to respond to climate change. Communities resulting from different ecological interaction structures form distinct clusters along this relationship, but varying species’ abilities to disperse and adapt to new temperatures leave it unaffected.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


2012 ◽  
Vol 20 (1) ◽  
pp. 108-115 ◽  
Author(s):  
Wu Weiwei ◽  
Xu Haigen ◽  
Wu Jun ◽  
Cao Mingchang

Sign in / Sign up

Export Citation Format

Share Document