scholarly journals Walrus areas of use in the Chukchi Sea during sparse sea ice cover

2012 ◽  
Vol 468 ◽  
pp. 1-13 ◽  
Author(s):  
CV Jay ◽  
AS Fischbach ◽  
AA Kochnev
Keyword(s):  
Sea Ice ◽  
2007 ◽  
Vol 27 (15) ◽  
pp. 2051-2065 ◽  
Author(s):  
Catherine Lalande ◽  
Jacqueline M. Grebmeier ◽  
Paul Wassmann ◽  
Lee W. Cooper ◽  
Mikhail V. Flint ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255837
Author(s):  
Catherine Lalande ◽  
Jacqueline M. Grebmeier ◽  
Andrew M. P. McDonnell ◽  
Russell R. Hopcroft ◽  
Stephanie O’Daly ◽  
...  

Unusually warm conditions recently observed in the Pacific Arctic region included a dramatic loss of sea ice cover and an enhanced inflow of warmer Pacific-derived waters. Moored sediment traps deployed at three biological hotspots of the Distributed Biological Observatory (DBO) during this anomalously warm period collected sinking particles nearly continuously from June 2017 to July 2019 in the northern Bering Sea (DBO2) and in the southern Chukchi Sea (DBO3), and from August 2018 to July 2019 in the northern Chukchi Sea (DBO4). Fluxes of living algal cells, chlorophyll a (chl a), total particulate matter (TPM), particulate organic carbon (POC), and zooplankton fecal pellets, along with zooplankton and meroplankton collected in the traps, were used to evaluate spatial and temporal variations in the development and composition of the phytoplankton and zooplankton communities in relation to sea ice cover and water temperature. The unprecedented sea ice loss of 2018 in the northern Bering Sea led to the export of a large bloom dominated by the exclusively pelagic diatoms Chaetoceros spp. at DBO2. Despite this intense bloom, early sea ice breakup resulted in shorter periods of enhanced chl a and diatom fluxes at all DBO sites, suggesting a weaker biological pump under reduced ice cover in the Pacific Arctic region, while the coincident increase or decrease in TPM and POC fluxes likely reflected variations in resuspension events. Meanwhile, the highest transport of warm Pacific waters during 2017–2018 led to a dominance of the small copepods Pseudocalanus at all sites. Whereas the export of ice-associated diatoms during 2019 suggested a return to more typical conditions in the northern Bering Sea, the impact on copepods persisted under the continuously enhanced transport of warm Pacific waters. Regardless, the biological pump remained strong on the shallow Pacific Arctic shelves.


1984 ◽  
Vol 30 (105) ◽  
pp. 230-234
Author(s):  
Thomas O’D ◽  
S.J. Hanley

AbstractDuring December 1973 the initial smooth ice cover on the Chukchi Sea near Barrow, Alaska, broke away from the shore during a period of strong wind and was replaced by a cover of broken, rafted ice which remained for the rest of the winter. Cores pulled from this cover were examined visually, and the salinity and density of sections of the cores were measured. Temperatures at several depths in the ice were recorded continuously, and these are presented near the date when the temperature gradient changed sign. Despite large deviations probably due to the irregularity of the ice cover, thickness and salinity followed the patterns seen by other observers.


2005 ◽  
Vol 20 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Anne de Vernal ◽  
Claude Hillaire-Marcel ◽  
Dennis A. Darby

1984 ◽  
Vol 30 (105) ◽  
pp. 230-234
Author(s):  
Thomas O’D ◽  
S.J. Hanley

AbstractDuring December 1973 the initial smooth ice cover on the Chukchi Sea near Barrow, Alaska, broke away from the shore during a period of strong wind and was replaced by a cover of broken, rafted ice which remained for the rest of the winter. Cores pulled from this cover were examined visually, and the salinity and density of sections of the cores were measured. Temperatures at several depths in the ice were recorded continuously, and these are presented near the date when the temperature gradient changed sign. Despite large deviations probably due to the irregularity of the ice cover, thickness and salinity followed the patterns seen by other observers.


2008 ◽  
Vol 45 (11) ◽  
pp. 1377-1397 ◽  
Author(s):  
J. L. McKay ◽  
A. de Vernal ◽  
C. Hillaire-Marcel ◽  
C. Not ◽  
L. Polyak ◽  
...  

Cores from site HLY0501-05 on the Alaskan margin in the eastern Chukchi Sea were analyzed for their geochemical (organic carbon, δ13Corg, Corg/N, and CaCO3) and palynological (dinocyst, pollen, and spores) content to document oceanographic changes during the Holocene. The chronology of the cores was established from 210Pb dating of near-surface sediments and 14C dating of bivalve shells. The sediments span the last 9000 years, possibly more, but with a gap between the base of the trigger core and top of the piston core. Sedimentation rates are very high (∼156 cm/ka), allowing analyses with a decadal to centennial resolution. The data suggest a shift from a dominantly terrigenous to marine input from the early to late Holocene. Dinocyst assemblages are characterized by relatively high concentrations (600–7200 cysts/cm3) and high species diversity, allowing the use of the modern analogue technique for the reconstruction of sea-ice cover, summer temperature, and salinity. Results indicate a decrease in sea-ice cover and a corresponding, albeit much smaller, increase in summer sea-surface temperature over the past 9000 years. Superimposed on these long-term trends are millennial-scale fluctuations characterized by periods of low sea-ice and high sea-surface temperature and salinity that appear quasi-cyclic with a frequency of about one every 2500–3000 years. The results of this study clearly show that sea-ice cover in the western Arctic Ocean has varied throughout the Holocene. More importantly, there have been times when sea-ice cover was less extensive than at the end of the 20th century.


1997 ◽  
Vol 43 (143) ◽  
pp. 138-151 ◽  
Author(s):  
M. O. Jeffries ◽  
K. Morris ◽  
W.F. Weeks ◽  
A. P. Worby

AbstractSixty-three ice cores were collected in the Bellingshausen and Amundsen Seas in August and September 1993 during a cruise of the R.V. Nathaniel B. Palmer. The structure and stable-isotopic composition (18O/16O) of the cores were investigated in order to understand the growth conditions and to identify the key growth processes, particularly the contribution of snow to sea-ice formation. The structure and isotopic composition of a set of 12 cores that was collected for the same purpose in the Bellingshausen Sea in March 1992 are reassessed. Frazil ice and congelation ice contribute 44% and 26%, respectively, to the composition of both the winter and summer ice-core sets, evidence that the relatively calm conditions that favour congelation-ice formation are neither as common nor as prolonged as the more turbulent conditions that favour frazil-ice growth and pancake-ice formation. Both frazil- and congelation-ice layers have an av erage thickness of 0.12 m in winter, evidence that congelation ice and pancake ice thicken primarily by dynamic processes. The thermodynamic development of the ice cover relies heavily on the formation of snow ice at the surface of floes after sea water has flooded the snow cover. Snow-ice layers have a mean thickness of 0.20 and 0.28 m in the winter and summer cores, respectively, and the contribution of snow ice to the winter (24%) and summer (16%) core sets exceeds most quantities that have been reported previously in other Antarctic pack-ice zones. The thickness and quantity of snow ice may be due to a combination of high snow-accumulation rates and snow loads, environmental conditions that favour a warm ice cover in which brine convection between the bottom and top of the ice introduces sea water to the snow/ice interface, and bottom melting losses being compensated by snow-ice formation. Layers of superimposed ice at the top of each of the summer cores make up 4.6% of the ice that was examined and they increase by a factor of 3 the quantity of snow entrained in the ice. The accumulation of superimposed ice is evidence that melting in the snow cover on Antarctic sea-ice floes ran reach an advanced stage and contribute a significant amount of snow to the total ice mass.


Author(s):  
Xiaoyi Shen ◽  
Chang-Qing Ke ◽  
Bin Cheng ◽  
Wentao Xia ◽  
Mengmeng Li ◽  
...  

AbstractIn August 2018, a remarkable polynya was observed off the north coast of Greenland, a perennial ice zone where thick sea ice cover persists. In order to investigate the formation process of this polynya, satellite observations, a coupled ice-ocean model, ocean profiling data, and atmosphere reanalysis data were applied. We found that the thinnest sea ice cover in August since 1978 (mean value of 1.1 m, compared to the average value of 2.8 m during 1978–2017) and the modest southerly wind caused by a positive North Atlantic Oscillation (mean value of 0.82, compared to the climatological value of −0.02) were responsible for the formation and maintenance of this polynya. The opening mechanism of this polynya differs from the one formed in February 2018 in the same area caused by persistent anomalously high wind. Sea ice drift patterns have become more responsive to the atmospheric forcing due to thinning of sea ice cover in this region.


Sign in / Sign up

Export Citation Format

Share Document