scholarly journals Mechanisms of the 14-3-3 Protein Function: Regulation of Protein Function Through Conformational Modulation

2014 ◽  
pp. S155-S164 ◽  
Author(s):  
V. OBSILOVA ◽  
M. KOPECKA ◽  
D. KOSEK ◽  
M. KACIROVA ◽  
S. KYLAROVA ◽  
...  

Many aspects of protein function regulation require specific protein-protein interactions to carry out the exact biochemical and cellular functions. The highly conserved members of the 14-3-3 protein family mediate such interactions and through binding to hundreds of other proteins provide multitude of regulatory functions, thus playing key roles in many cellular processes. The 14-3-3 protein binding can affect the function of the target protein in many ways including the modulation of its enzyme activity, its subcellular localization, its structure and stability, or its molecular interactions. In this minireview, we focus on mechanisms of the 14-3-3 protein-dependent regulation of three important 14-3-3 binding partners: yeast neutral trehalase Nth1, regulator of G-protein signaling 3 (RGS3), and phosducin.

2018 ◽  
Vol 25 (1) ◽  
pp. 5-21 ◽  
Author(s):  
Ylenia Cau ◽  
Daniela Valensin ◽  
Mattia Mori ◽  
Sara Draghi ◽  
Maurizio Botta

14-3-3 is a class of proteins able to interact with a multitude of targets by establishing protein-protein interactions (PPIs). They are usually found in all eukaryotes with a conserved secondary structure and high sequence homology among species. 14-3-3 proteins are involved in many physiological and pathological cellular processes either by triggering or interfering with the activity of specific protein partners. In the last years, the scientific community has collected many evidences on the role played by seven human 14-3-3 isoforms in cancer or neurodegenerative diseases. Indeed, these proteins regulate the molecular mechanisms associated to these diseases by interacting with (i) oncogenic and (ii) pro-apoptotic proteins and (iii) with proteins involved in Parkinson and Alzheimer diseases. The discovery of small molecule modulators of 14-3-3 PPIs could facilitate complete understanding of the physiological role of these proteins, and might offer valuable therapeutic approaches for these critical pathological states.


2019 ◽  
Vol 3 (4) ◽  
pp. 357-369
Author(s):  
J. Harry Caufield ◽  
Peipei Ping

Abstract Protein–protein interactions, or PPIs, constitute a basic unit of our understanding of protein function. Though substantial effort has been made to organize PPI knowledge into structured databases, maintenance of these resources requires careful manual curation. Even then, many PPIs remain uncurated within unstructured text data. Extracting PPIs from experimental research supports assembly of PPI networks and highlights relationships crucial to elucidating protein functions. Isolating specific protein–protein relationships from numerous documents is technically demanding by both manual and automated means. Recent advances in the design of these methods have leveraged emerging computational developments and have demonstrated impressive results on test datasets. In this review, we discuss recent developments in PPI extraction from unstructured biomedical text. We explore the historical context of these developments, recent strategies for integrating and comparing PPI data, and their application to advancing the understanding of protein function. Finally, we describe the challenges facing the application of PPI mining to the text concerning protein families, using the multifunctional 14-3-3 protein family as an example.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 782 ◽  
Author(s):  
Virja Mehta ◽  
Laura Trinkle-Mulcahy

Protein-protein interactions (PPIs) underlie most, if not all, cellular functions. The comprehensive mapping of these complex networks of stable and transient associations thus remains a key goal, both for systems biology-based initiatives (where it can be combined with other ‘omics’ data to gain a better understanding of functional pathways and networks) and for focused biological studies. Despite the significant challenges of such an undertaking, major strides have been made over the past few years. They include improvements in the computation prediction of PPIs and the literature curation of low-throughput studies of specific protein complexes, but also an increase in the deposition of high-quality data from non-biased high-throughput experimental PPI mapping strategies into publicly available databases.


2018 ◽  
Author(s):  
Anne-Florence Bitbol

AbstractSpecific protein-protein interactions are crucial in most cellular processes. They enable multiprotein complexes to assemble and to remain stable, and they allow signal transduction in various pathways. Functional interactions between proteins result in coevolution between the interacting partners, and thus in correlations between their sequences. Pairwise maximum-entropy based models have enabled successful inference of pairs of amino-acid residues that are in contact in the three-dimensional structure of multi-protein complexes, starting from the correlations in the sequence data of known interaction partners. Recently, algorithms inspired by these methods have been developed to identify which proteins are specific interaction partners among the paralogous proteins of two families, starting from sequence data alone. Here, we demonstrate that a slightly higher performance for partner identification can be reached by an approximate maximization of the mutual information between the sequence alignments of the two protein families. This stands in contrast with structure prediction of proteins and of multiprotein complexes from sequence data, where pairwise maximum-entropy based global statistical models substantially improve performance compared to mutual information. Our findings entail that the statistical dependences allowing interaction partner prediction from sequence data are not restricted to the residue pairs that are in direct contact at the interface between the partner proteins.Author summarySpecific protein-protein interactions are at the heart of most intra-cellular processes. Mapping these interactions is thus crucial to a systems-level understanding of cells, and has broad applications to areas such as drug targeting. Systematic experimental identification of protein interaction partners is still challenging. However, a large and rapidly growing amount of sequence data is now available. Recently, algorithms have been proposed to identify which proteins interact from their sequences alone, thanks to the co-variation of the sequences of interacting proteins. These algorithms build upon inference methods that have been used with success to predict the three-dimensional structures of proteins and multi-protein complexes, and their focus is on the amino-acid residues that are in direct contact. Here, we propose a simpler method to identify which proteins interact among the paralogous proteins of two families, starting from their sequences alone. Our method relies on an approximate maximization of mutual information between the sequences of the two families, without specifically emphasizing the contacting residue pairs. We demonstrate that this method slightly outperforms the earlier one. This result highlights that partner prediction does not only rely on the identities and interactions of directly contacting amino-acids.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 569 ◽  
Author(s):  
Gundogdu ◽  
Hergovich

The family of MOBs (monopolar spindle-one-binder proteins) is highly conserved in the eukaryotic kingdom. MOBs represent globular scaffold proteins without any known enzymatic activities. They can act as signal transducers in essential intracellular pathways. MOBs have diverse cancer-associated cellular functions through regulatory interactions with members of the NDR/LATS kinase family. By forming additional complexes with serine/threonine protein kinases of the germinal centre kinase families, other enzymes and scaffolding factors, MOBs appear to be linked to an even broader disease spectrum. Here, we review our current understanding of this emerging protein family, with emphases on post-translational modifications, protein-protein interactions, and cellular processes that are possibly linked to cancer and other diseases. In particular, we summarise the roles of MOBs as core components of the Hippo tissue growth and regeneration pathway.


2019 ◽  
Author(s):  
Hassan Kané ◽  
Mohamed Coulibali ◽  
Ali Abdalla ◽  
Pelkins Ajanoh

ABSTRACTComputational methods that infer the function of proteins are key to understanding life at the molecular level. In recent years, representation learning has emerged as a powerful paradigm to discover new patterns among entities as varied as images, words, speech, molecules. In typical representation learning, there is only one source of data or one level of abstraction at which the learned representation occurs. However, proteins can be described by their primary, secondary, tertiary, and quaternary structure or even as nodes in protein-protein interaction networks. Given that protein function is an emergent property of all these levels of interactions in this work, we learn joint representations from both amino acid sequence and multilayer networks representing tissue-specific protein-protein interactions. Using these hybrid representations, we show that simple machine learning models trained using these hybrid representations outperform existing network-based methods on the task of tissue-specific protein function prediction on 13 out of 13 tissues. Furthermore, these representations outperform existing ones by 14% on average.


Author(s):  
Romain Veyron-Churlet ◽  
Camille Locht

Studies on Protein-Protein interactions (PPI) can be helpful for the annotation of unknown protein function and for the understanding of cellular processes, such as specific virulence mechanisms developed by bacterial pathogens. In that context, several methods have been extensively used in recent years for the characterization of Mycobacterium tuberculosis PPI to further decipher TB pathogenesis. This review aims at compiling the most striking results based on in vivo methods (yeast and bacterial two-hybrid systems, protein complementation assays) for the specific study of PPI in mycobacteria. Moreover, newly developed methods, such as in-cell native mass resonance and proximity-dependent biotinylation identification, will have a deep impact on future mycobacterial research, as they are able to perform dynamic (transient interactions) and integrative (multiprotein complexes) analyses.


2019 ◽  
Author(s):  
Swarup Roy Choudhury ◽  
Sona Pandey

SUMMARYHeterotrimeric G-proteins, comprised of Gα, Gβ and Gγ subunits regulate signaling in eukaryotes. In metazoans, G-proteins are activated by GPCR-mediated GDP to GTP exchange on Gα; however, the role of receptors in regulating plant G-protein signaling remains equivocal. Mounting evidence points to the involvement of receptor-like kinases (RLKs) in regulating plant G-protein signaling pathways, but their mechanistic details remain limited. We have previously shown that during soybean nodulation, the nod factor receptor 1 (NFR1) interacts with G-protein components and indirectly controls signaling.We explored the direct regulation of G-protein signaling by RLKs using protein-protein interactions, receptor-mediated phosphorylation and the effects of such phosphorylations on soybean nodule formation.Results presented in this study demonstrate a direct, phosphorylation-based regulation of Gα by symbiosis receptor kinase (SymRK). SymRKs interact with and phosphorylate Gα at multiple residues, including two in its active site, which abolishes GTP binding. In addition, phospho-mimetic Gα fails to interact with Gβγ, potentially allowing for constitutive signaling by the freed Gβγ.These results uncover a novel mechanism of G-protein cycle regulation in plants where receptor-mediated phosphorylation of Gα not only affects its activity, but also influences the availability of its signaling partners, thereby exerting a two-pronged control on signaling.


Sign in / Sign up

Export Citation Format

Share Document