scholarly journals Remote Ischemic Preconditioning of the Heart: Protective Responses in Functional and Biophysical Properties of Cardiac Mitochondria

2014 ◽  
pp. S469-S478 ◽  
Author(s):  
M. FERKO ◽  
I. KANCIROVÁ ◽  
M. JAŠOVÁ ◽  
S. ČARNICKÁ ◽  
M. MURÁRIKOVÁ ◽  
...  

Remote ischemic preconditioning (RIP)-induced protection of myocardial energetics was well documented on the level of tissue, but data concerning the involvement of mitochondria were missing. We aimed at the identification of changes in membrane properties and respiratory functions induced in rat heart mitochondria by RIP. Experiments were performed on 46 male Wistar rats divided into control and RIP-treated groups of 21 animals each. Blood flow in the occluded area was recorded by MRI angiography in four animals. RIP protocol comprised of three successive 5-min occlusions each followed by 5-min reperfusions of descending branches of the right hind limb femoral artery. The efficacy of RIP was evaluated as the extent of RIP-induced protection against damage to the functions of mitochondria isolated by differential centrifugation after 30-min global ischemia followed by 40-min reperfusion of the hearts in Langendorff mode. Assessments: mitochondrial membrane fluidity with a fluorescent probe DPH, CoQ9 and CoQ10 with HPLC, mitochondrial respiration with the Oxygraph-2k (Oroboros). Results revealed that RIP was affecting the mitochondria. The immediate protection conferred by RIP involves beneficial and prognostically significant effects: a total elimination of ischemia/reperfusion-induced depression of mitochondrial membrane fluidity and a trend for better preservation of mitochondrial state 3 respiration.

2020 ◽  
Vol 76 (3) ◽  
pp. 439-451
Author(s):  
Gabor Varga ◽  
Souleiman Ghanem ◽  
Balazs Szabo ◽  
Kitti Nagy ◽  
Noemi Pal ◽  
...  

BACKGROUND: The optimal timing of remote ischemic preconditioning (RIPC) in renal ischemia-reperfusion (I/R) injury is still unclear. We aimed to compare early- and delayed-effect RIPC with hematological, microcirculatory and histomorphological parameters. METHODS: In anesthetized male CrI:WI Control rats (n = 7) laparotomy and femoral artery cannulation were performed. In I/R group (n = 7) additionally a 45-minute unilateral renal ischemia with 120-minute reperfusion was induced. The right hind-limb was strangulated for 3×10 minutes (10-minute intermittent reperfusion) 1 hour (RIPC-1 group, n = 7) or 24 hour (RIPC-24 group, n = 6) prior to the I/R. Hemodynamic, hematological parameters and organs’ surface microcirculation were measured. RESULTS: Control and I/R group had the highest heart rate (p < 0.05 vs base), while the lowest mean arterial pressure (p < 0.05 vs RIPC-1) were found in the RIPC-24 group. The highest microcirculation values were measured in the I/R group (liver: p < 0.05 vs Control). The leukocyte count increased in I/R group (base: p < 0.05 vs Control), also this group’s histological score was the highest (p < 0.05 vs Control). The RIPC-24 group had a significantly lower score than the RIPC-1 (p = 0.0025 vs RIPC-1). CONCLUSION: Renal I/R caused significant functional and morphological, also in the RIPC groups. According to the histological examination the delayed-effect RIPC method was more effective.


2015 ◽  
pp. S617-S625 ◽  
Author(s):  
M. FERKO ◽  
I. KANCIROVÁ ◽  
M. JAŠOVÁ ◽  
I. WACZULÍKOVÁ ◽  
S. ČARNICKÁ ◽  
...  

Acute streptozotocin diabetes mellitus (DM) as well as remote ischemic preconditioning (RPC) has shown a favorable effect on the postischemic-reperfusion function of the myocardium. Cardioprotective mechanisms offered by these experimental models involve the mitochondria with the changes in functional properties of membrane as the end-effector. The aim was to find out whether separate effects of RPC and DM would stimulate the mechanisms of cardioprotection to a maximal level or whether RPC and DM conditions would cooperate in stimulation of cardioprotection. Experiments were performed on male Wistar rats divided into groups: control, DM, RPC and DM treated by RPC (RPC+DM). RPC protocol of 3 cycles of 5-min hind limb ischemia followed by 5-min reperfusion was used. Ischemic-reperfusion injury was induced by 30-min ischemia followed by 40-min reperfusion of the hearts in Langendorff mode. Mitochondria were isolated by differential centrifugation, infarct size assessed by staining with 1 % 2,3,5-triphenyltetrazolium chloride, mitochondrial membrane fluidity with a fluorescent probe DPH, CoQ9 and CoQ10 with HPLC. Results revealed that RPC as well as DM decreased the infarct size and preserved mitochondrial function by increasing the mitochondrial membrane fluidity. Both used models separately offered a sufficient protection against ischemic-reperfusion injury without an additive effect of their combination.


Author(s):  
Amteshwar Singh Jaggi

Aim: The aim of the present study is to explore the neuroprotective effects of remote ischemic preconditioning in long term cognitive impairment after global cerebral ischemia induced-vascular dementia in mice. Material and methods: The mice were subjected to global cerebral ischemia by occluding the bilateral common carotid arteries for 12 minutes followed by the 24 hours of the reperfusion. The remote ischemic preconditioning stimulus was delivered in the form of 4 cycles of ischemia/reperfusion for 5 minutes each. The cerebral ischemic injury induced-long term cognitive impairment-related learning and memory alterations was assessed using morris water maze, the motor performances of the animals were evaluated using rota-rod test and neurological severity score. The cerebral infract size of the brain were quantified using triphenyltetrazolium chloride staining. Results: Global cerebral ischemia causes long term memory impairment, decreases motor performances and increases the brain infract size in animals. The delivery of remote ischemic preconditioning stimulus significantly abolished the long-term cognitive impairment and ameliorates the motor performances as well as cerebral infract size in brain. Conclusion: The remote ischemic preconditioning mediates neuro protection against global cerebral ischemic injury induced long-term cognitive impairment.


Author(s):  
Yun-Hee Kim ◽  
Sung-Uk Choi ◽  
Jung-Min Youn ◽  
Seung-Ha Cha ◽  
Hyeon-Ju Shin ◽  
...  

BACKGROUND: The prevention of rheologic alterations in erythrocytes may be important for reducing sepsis-associated morbidity and mortality. Remote ischemic preconditioning (RIPC) has been shown to prevent tissue damage caused by severe ischemia and mortality resulting from sepsis. However, the effect of RIPC on erythrocytes in sepsis is yet to be determined. OBJECTIVE: To investigate the effect of RIPC on rheologic alterations in erythrocytes in sepsis. METHODS: Thirty male Sprague-Dawley rats were used in this study. An endotoxin-induced sepsis model was established by intraperitoneally injecting 20 mg/kg LPS (LPS group). RIPC was induced in the right hind limb using a tourniquet, with three 10-minute of ischemia and 10 min of reperfusion cycles immediately before the injection of LPS (RIPC/LPS group) or phosphate-buffered saline (RIPC group). The aggregation index (AI), time to half-maximal aggregation (T1/2), and maximal elongation index (EImax) of the erythrocytes were measured 8 h after injection. RESULTS: The AI, T1/2, and EImax values in the LPS and RIPC/LPS groups differed significantly from those in the RIPC group, but there were no differences between the values in the LPS and RIPC/LPS groups. CONCLUSIONS: RIPC did not prevent rheologic alterations in erythrocytes in the rat model of LPS-induced endotoxemia.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Simón Quetzalcoatl Rodríguez-Lara ◽  
Ernesto German Cardona-Muñoz ◽  
Ernesto Javier Ramírez-Lizardo ◽  
Sylvia Elena Totsuka-Sutto ◽  
Araceli Castillo-Romero ◽  
...  

Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states.


Author(s):  
Marco Orlandi ◽  
Stefano Masi ◽  
Devina Bhowruth ◽  
Yago Leira ◽  
Georgios Georgiopoulos ◽  
...  

Objective: Inflammation, oxidative stress, and endothelial dysfunction are known to contribute to ischemia-reperfusion injury. Remote ischemic preconditioning (RIPC) protects from endothelial dysfunction and the damage induced by ischemia-reperfusion. Using intensive periodontal treatment (IPT), an established human model of acute systemic inflammation, we investigated whether RIPC prevents endothelial dysfunction and modulates systemic levels of inflammation and oxidative stress. Approach and Results: Forty-nine participants with periodontitis were randomly allocated to receive either 3 cycles of ischemia-reperfusion on the upper limb (N=25, RIPC) or a sham procedure (N=24, control) before IPT. Endothelial function assessed by flow-mediated dilatation of the brachial artery, inflammatory cytokines, markers of vascular injury, and oxidative stress were evaluated at baseline, day 1, and day 7 after IPT. Twenty-four hours post-IPT, the RIPC group had lower levels of IL (interleukin)-10 and IL-12 compared with the control group ( P <0.05). RIPC attenuated the IPT-induced increase in IL-1β, E-selectin, sICAM-3 (soluble intercellular adhesion molecule 3), and s-thrombomodulin levels between the baseline and day 1 ( P for interaction <0.1). Conversely, oxidative stress was differentially increased at day1 in the RIPC group compared with the control group ( P for interaction <0.1). This was accompanied by a better flow-mediated dilatation (mean difference 1.75% [95% CI, 0.428–3.07], P =0.011). After 7 days from IPT, most of the inflammatory markers endothelial-dependent and -independent vasodilation were similar between groups. Conclusions: RIPC prevented acute endothelial dysfunction by modulation of inflammation and oxidation processes in patients with periodontitis following exposure to an acute inflammatory stimulus. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT03072342.


2017 ◽  
Vol 95 (8) ◽  
pp. 969-976 ◽  
Author(s):  
Martina Muráriková ◽  
Miroslav Ferko ◽  
Iveta Waczulíková ◽  
Magdaléna Jašová ◽  
Ivana Kancirová ◽  
...  

Diabetes mellitus, besides having deleterious effects, induces cardiac adaptation that may reduce the heart’s susceptibility to ischemia–reperfusion (IR) injury. This study aimed to investigate whether changes in mitochondrial properties are involved in the mechanisms of increased resistance of the diabetic heart to IR. Adult male Wistar rats were made diabetic by a single dose of streptozotocin (65 mg·kg–1, i.p.), and on the day 8, Langendorff-perfused hearts were subjected to 30 min global ischemia and 40 min reperfusion. Baseline preischemic parameters in the diabetic hearts did not differ markedly from those in the nondiabetic controls, except for lower left ventricular developed pressure, higher mitochondrial membrane fluidity, and protein levels of manganese superoxide dismutase. On the other hand, diabetic hearts showed significantly better post-IR functional restoration and reduced arrhythmogenesis associated with lower reactive oxygen species production as compared with healthy controls. IR decreased membrane fluidity in both experimental groups; however, it led to a complete recovery of mitochondrial Mg2+-ATPase activity in diabetics in contrast to its reduction in nondiabetics. These findings indicate that the heart may become adapted to diabetes-induced alterations that might increase its tolerance to an ischemic insult. Preserved mitochondrial function might play a role in the mechanisms of the heart’s resistance to IR injury in diabetics.


Sign in / Sign up

Export Citation Format

Share Document