scholarly journals Alternative Interventions to Prevent Oxidative Damage following Ischemia/Reperfusion

2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Simón Quetzalcoatl Rodríguez-Lara ◽  
Ernesto German Cardona-Muñoz ◽  
Ernesto Javier Ramírez-Lizardo ◽  
Sylvia Elena Totsuka-Sutto ◽  
Araceli Castillo-Romero ◽  
...  

Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states.

Author(s):  
Marco Orlandi ◽  
Stefano Masi ◽  
Devina Bhowruth ◽  
Yago Leira ◽  
Georgios Georgiopoulos ◽  
...  

Objective: Inflammation, oxidative stress, and endothelial dysfunction are known to contribute to ischemia-reperfusion injury. Remote ischemic preconditioning (RIPC) protects from endothelial dysfunction and the damage induced by ischemia-reperfusion. Using intensive periodontal treatment (IPT), an established human model of acute systemic inflammation, we investigated whether RIPC prevents endothelial dysfunction and modulates systemic levels of inflammation and oxidative stress. Approach and Results: Forty-nine participants with periodontitis were randomly allocated to receive either 3 cycles of ischemia-reperfusion on the upper limb (N=25, RIPC) or a sham procedure (N=24, control) before IPT. Endothelial function assessed by flow-mediated dilatation of the brachial artery, inflammatory cytokines, markers of vascular injury, and oxidative stress were evaluated at baseline, day 1, and day 7 after IPT. Twenty-four hours post-IPT, the RIPC group had lower levels of IL (interleukin)-10 and IL-12 compared with the control group ( P <0.05). RIPC attenuated the IPT-induced increase in IL-1β, E-selectin, sICAM-3 (soluble intercellular adhesion molecule 3), and s-thrombomodulin levels between the baseline and day 1 ( P for interaction <0.1). Conversely, oxidative stress was differentially increased at day1 in the RIPC group compared with the control group ( P for interaction <0.1). This was accompanied by a better flow-mediated dilatation (mean difference 1.75% [95% CI, 0.428–3.07], P =0.011). After 7 days from IPT, most of the inflammatory markers endothelial-dependent and -independent vasodilation were similar between groups. Conclusions: RIPC prevented acute endothelial dysfunction by modulation of inflammation and oxidation processes in patients with periodontitis following exposure to an acute inflammatory stimulus. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT03072342.


Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582094692
Author(s):  
Eun Kyung Choi ◽  
Hoon Jung ◽  
Sungmin Jeon ◽  
Jung A. Lim ◽  
Jungwon Lee ◽  
...  

The effect of remote ischemic preconditioning (RIPC) has been proposed that mediates the protective response in ischemia reperfusion injury (IRI) of various organs. In this study, we investigated the effect of RIPC in hepatic IRI, by assessing biomarker of oxidative stress and inflammatory cytokines. Moreover, we intended to demonstrate any such protective effect through nitric oxide (NO). Twenty-five rats were divided into the 5 groups: (1) Sham; (2) RIPC; (3) hepatic IRI; (4) RIPC + hepatic IRI; (5) C-PTIO, 2-(4-carboxyphenyl)-4,5dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3oxide, + RIPC + hepatic IRI. RIPC downregulated the level of aspartate aminotransferase (AST), alanine aminotransferase (ALT), histologic damage, and activity of Malondialdehyde (MDA). However, there was no significant reduction in the level of tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa B (NF-κB). AST and ALT levels, and hepatic tissue morphology in the C-PTIO group showed a significant improvement compared to those of the RIPC + hepatic IRI group. The application of RIPC before hepatic ischemia downregulated the oxidative stress, not the inflammatory cytokines. Moreover, these protective effect of RIPC would be mediated through the activation of NO as well as anti-oxidant effect.


2016 ◽  
Vol 311 (2) ◽  
pp. H364-H370 ◽  
Author(s):  
Elisabeth A. Lambert ◽  
Colleen J. Thomas ◽  
Robyn Hemmes ◽  
Nina Eikelis ◽  
Atul Pathak ◽  
...  

Sympathetic neural activation may be detrimentally involved in tissue injury caused by ischemia-reperfusion (IR). We examined the effects of experimental IR in the forearm on sympathetic nerve response, finger reactive hyperemia, and oxidative stress, and the protection afforded by applying remote ischemic preconditioning (RIPC). Ischemia was induced in the forearm for 20 min in healthy volunteers. RIPC was induced by applying two cycles, 5 min each, of ischemia and reperfusion to the upper leg immediately before IR. We examined muscle sympathetic nerve activity (MSNA) in the contralateral leg using microneurography, finger reactive hyperemia [ischemic reactive hyperemia index (RHI)], erythrocyte production of reduced gluthathione (GSH), and plasma nitric oxide (NO) concentration. In controls (no RIPC; n = 15), IR increased MSNA in the early and late phase of ischemia (70% at 5 min; 101% at 15 min). In subjects who underwent RIPC ( n = 15), the increase in MSNA was delayed to the late phase of ischemia and increased only by 40%. GSH increased during ischemia in the control group ( P = 0.05), but not in those who underwent RIPC. Nitrate and nitrite concentration, taken as an index of NO availability, decreased during the reperfusion period in control individuals ( P < 0.05), while no change was observed in those who underwent RIPC. Experimental IR did not affect RHI in the control condition, but a significant vasodilatory response occurred in the RIPC group ( P < 0.05). RIPC attenuated ischemia-induced sympathetic activation, prevented the production of an erythrocyte marker of oxidative stress and the reduction of NO availability, and ameliorated RHI.


Author(s):  
Amteshwar Singh Jaggi

Aim: The aim of the present study is to explore the neuroprotective effects of remote ischemic preconditioning in long term cognitive impairment after global cerebral ischemia induced-vascular dementia in mice. Material and methods: The mice were subjected to global cerebral ischemia by occluding the bilateral common carotid arteries for 12 minutes followed by the 24 hours of the reperfusion. The remote ischemic preconditioning stimulus was delivered in the form of 4 cycles of ischemia/reperfusion for 5 minutes each. The cerebral ischemic injury induced-long term cognitive impairment-related learning and memory alterations was assessed using morris water maze, the motor performances of the animals were evaluated using rota-rod test and neurological severity score. The cerebral infract size of the brain were quantified using triphenyltetrazolium chloride staining. Results: Global cerebral ischemia causes long term memory impairment, decreases motor performances and increases the brain infract size in animals. The delivery of remote ischemic preconditioning stimulus significantly abolished the long-term cognitive impairment and ameliorates the motor performances as well as cerebral infract size in brain. Conclusion: The remote ischemic preconditioning mediates neuro protection against global cerebral ischemic injury induced long-term cognitive impairment.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Mehmet Balin ◽  
Tarık Kıvrak

Background/Objective. Intermittent claudication (IC) is the symptom of peripheral artery disease (PAD) and causes functional disability. Remote ischemic preconditioning (RIPC), is a phenomenon in which a short period of sub-critical ischemia, protects tissues against ischemia/reperfusion/injury. We considered to test the hypothesis that RIPC in PAD patients suffering from IC would increase muscle resistance to ischemia and thus improve walking-capacity. Materials/Methods. A total of 63 patients with proven-IC underwent two treadmill tests (graded treadmill protocol) with a 28-day interval in between. Patients were consecutively assigned for the non/RIPC-group and RIPC-group procedure one by one. Patients received 5-cycles of alternating 5-minute inflation and 5-minute deflation of blood-pressure cuffs on nondominant upper-limb every day for four weeks. Initial claudication distance (ICD), total walking distance (TWD) and time to relief of claudication (TRC) were recorded during procedure. Results. Patients receiving-RIPC exhibited a marked increase in ICD and TWD between basal and last tests: 209.1 ± 15.4 m vs. 226 ± 15.0 m and 368.8 ± 21.0 m vs. 394 ± 19.9 m, respectively (p<0.001). In addition, patients receiving-RIPC represented a significant decrease in TRC between basal and last tests: 7.8 ± 1.3 min vs. 6.4 ± 1.1 min, respectively (p<0.001). Patients not receiving-RIPC did not exhibit improvement in ICD, TWD, and TRC between basal and last tests: 205.2 ± 12.1 min vs. 207.4 ± 9.9 min, 366.5 ± 24.2 min vs. 369.4 ± 23.2 min and 7.9 ± 1.4 min vs. 7.7 ± 1.3 min, respectively (p>0.05). Conclusion. A significant increase in ICD and TWD were observed in last/treadmill test in RIPC-group. In addition, a significant decrease in TRC was observed in last/treadmill test in RIPC-group. In non/RIPC-group, no improvement was observed in ICD, TWD and TRC.


2020 ◽  
Vol 76 (3) ◽  
pp. 439-451
Author(s):  
Gabor Varga ◽  
Souleiman Ghanem ◽  
Balazs Szabo ◽  
Kitti Nagy ◽  
Noemi Pal ◽  
...  

BACKGROUND: The optimal timing of remote ischemic preconditioning (RIPC) in renal ischemia-reperfusion (I/R) injury is still unclear. We aimed to compare early- and delayed-effect RIPC with hematological, microcirculatory and histomorphological parameters. METHODS: In anesthetized male CrI:WI Control rats (n = 7) laparotomy and femoral artery cannulation were performed. In I/R group (n = 7) additionally a 45-minute unilateral renal ischemia with 120-minute reperfusion was induced. The right hind-limb was strangulated for 3×10 minutes (10-minute intermittent reperfusion) 1 hour (RIPC-1 group, n = 7) or 24 hour (RIPC-24 group, n = 6) prior to the I/R. Hemodynamic, hematological parameters and organs’ surface microcirculation were measured. RESULTS: Control and I/R group had the highest heart rate (p < 0.05 vs base), while the lowest mean arterial pressure (p < 0.05 vs RIPC-1) were found in the RIPC-24 group. The highest microcirculation values were measured in the I/R group (liver: p < 0.05 vs Control). The leukocyte count increased in I/R group (base: p < 0.05 vs Control), also this group’s histological score was the highest (p < 0.05 vs Control). The RIPC-24 group had a significantly lower score than the RIPC-1 (p = 0.0025 vs RIPC-1). CONCLUSION: Renal I/R caused significant functional and morphological, also in the RIPC groups. According to the histological examination the delayed-effect RIPC method was more effective.


Sign in / Sign up

Export Citation Format

Share Document