scholarly journals The prospects of alcohol industry wastes application in photoproduction of hydrogen by the purple bacteria Rhodobacter sphaeroides

Author(s):  
Lilit S. Gabrielyan

The possibilities of using various industrial wastes to produce biofuel are currently being considered. It will provide not only novel, efficient and cheap sources of hydrogen (H2), but will also help to solve the problem of waste disposal. The current work presents the prospects of application of alcohol industry wastes, such as distillers grains and brewery spent grains, for production of H2 by the purple bacteria Rhodobacter sphaeroides MDC6522. The data obtained showed the possibility of using distillers grains and brewery spent grains as effective carbon sources for producing H2. It was shown that pre-treatment of wastes, their dilution and neutralization are necessary to ensure the effective bacterial growth and H2 production by R. sphaeroides. The growth rate and H2 yield during the cultivation of bacteria on a 2-fold diluted distillers grains medium increased 2- and 4-fold, respectively, compared with a culture, grown on standard Ormerod medium. At the same time, the growth rate and photoproduction of H2 on a 10-fold diluted brewery spent grains medium were 2-fold higher, in comparison with the control. Thus, the results obtained indicate that these alcohol industry wastes can be used as promising substrates for biohydrogen production.

Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121108
Author(s):  
Jun Hu ◽  
Wenwen Wei ◽  
Qing Li ◽  
Wen Cao ◽  
Anlong Zhang ◽  
...  

Genetics ◽  
2002 ◽  
Vol 162 (3) ◽  
pp. 1147-1156 ◽  
Author(s):  
Theodor Hanekamp ◽  
Mary K Thorsness ◽  
Indrani Rebbapragada ◽  
Elizabeth M Fisher ◽  
Corrine Seebart ◽  
...  

Abstract In the yeast Saccharomyces cerevisiae, certain mutant alleles of YME4, YME6, and MDM10 cause an increased rate of mitochondrial DNA migration to the nucleus, carbon-source-dependent alterations in mitochondrial morphology, and increased rates of mitochondrial DNA loss. While single mutants grow on media requiring mitochondrial respiration, any pairwise combination of these mutations causes a respiratory-deficient phenotype. This double-mutant phenotype allowed cloning of YME6, which is identical to MMM1 and encodes an outer mitochondrial membrane protein essential for maintaining normal mitochondrial morphology. Yeast strains bearing null mutations of MMM1 have altered mitochondrial morphology and a slow growth rate on all carbon sources and quantitatively lack mitochondrial DNA. Extragenic suppressors of MMM1 deletion mutants partially restore mitochondrial morphology to the wild-type state and have a corresponding increase in growth rate and mitochondrial DNA stability. A dominant suppressor also suppresses the phenotypes caused by a point mutation in MMM1, as well as by specific mutations in YME4 and MDM10.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 157
Author(s):  
Ahmed Sadeq Al-Fatesh ◽  
Mayankkumar Lakshmanbhai Chaudhary ◽  
Anis Hamza Fakeeha ◽  
Ahmed Aidid Ibrahim ◽  
Fahad Al-Mubaddel ◽  
...  

H2 production through dry reforming of methane (DRM) is a hot topic amidst growing environmental and atom-economy concerns. Loading Ni-based reducible mixed oxide systems onto a thermally stable support is a reliable approach for obtaining catalysts of good dispersion and high stability. Herein, NiO was dispersed over MOx-modified-γ-Al2O3 (M = Ti, Mo, Si, or W; x = 2 or 3) through incipient wetness impregnation followed by calcination. The obtained catalyst systems were characterized by infrared, ultraviolet–visible, and X-ray photoelectron spectroscopies, and H2 temperature-programmed reduction. The mentioned synthetic procedure afforded the proper nucleation of different NiO-containing mixed oxides and/or interacting-NiO species. With different modifiers, the interaction of NiO with the γ-Al2O3 support was found to change, the Ni2+ environment was reformed exclusively, and the tendency of NiO species to undergo reduction was modified greatly. Catalyst systems 5Ni3MAl (M = Si, W) comprised a variety of species, whereby NiO interacted with the modifier and the support (e.g., NiSiO3, NiAl2O4, and NiWO3). These two catalyst systems displayed equal efficiency, >70% H2 yield at 800 °C, and were thermally stable for up to 420 min on stream. 5Ni3SiAl catalyst regained nearly all its activity during regeneration for up to two cycles.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 931 ◽  
Author(s):  
Kyriaki Polychronopoulou ◽  
Nikolaos Charisiou ◽  
Kyriakos Papageridis ◽  
Victor Sebastian ◽  
Steven Hinder ◽  
...  

In the present study, Ni/Ce-Sm-xCu (x = 5, 7, 10 at.%) catalysts were prepared using microwave radiation coupled with sol-gel and followed by wetness impregnation method for the Ni incorporation. Highly dispersed nanocrystallites of CuO and NiO on the Ce-Sm-Cu support were found. Increase of Cu content seems to facilitate the reducibility of the catalyst according to the H2 temperature-programmed reduction (H2-TPR). All the catalysts had a variety of weak, medium and strong acid/basic sites that regulate the reaction products. All the catalysts had very high XC3H8O3 for the entire temperature (400–750 °C) range; from ≈84% at 400 °C to ≈94% at 750 °C. Ni/Ce-Sm-10Cu catalyst showed the lowest XC3H8O3-gas implying the Cu content has a detrimental effect on performance, especially between 450–650 °C. In terms of H2 selectivity (SH2) and H2 yield (YH2), both appeared to vary in the following order: Ni/Ce-Sm-10Cu > Ni/Ce-Sm-7Cu > Ni/Ce-Sm-5Cu, demonstrating the high impact of Cu content. Following stability tests, all the catalysts accumulated high amounts of carbon, following the order Ni/Ce-Sm-5Cu < Ni/Ce-Sm-7Cu < Ni/Ce-Sm-10Cu (52, 65 and 79 wt.%, respectively) based on the thermogravimetric analysis (TGA) studies. Raman studies showed that the incorporation of Cu in the support matrix controls the extent of carbon graphitization deposited during the reaction at hand.


Microbiology ◽  
2021 ◽  
Vol 167 (7) ◽  
Author(s):  
Poulami Ghosh ◽  
Anik Barman ◽  
Sujoy K. Das Gupta

In Mycobacterium smegmatis (renamed Mycolicibacterium smegmatis ), glucose 6-phosphate (G6P) level is exceptionally high as compared to other bacteria, E. coli for example. Earlier investigations have indicated that G6P protects M. smegmatis (Msm) against oxidative stress-inducing agents. G6P is a glycolytic intermediate formed either directly through the phosphorylation of glucose or indirectly via the gluconeogenic pathway. Its consumption is catalysed by several enzymes, one of which being the NADPH dependent G6P dehydrogenase (G6PDH) encoded by zwf (msmeg_0314). While investigating the extent to which the carbon sources glucose and glycerol influence Msm growth, we observed that intracellular concentration of G6P was lower in the former’s presence than the latter. We could correlate this difference with that in the growth rate, which was higher in glycerol than glucose. We also found that lowering of G6P content in glucose-grown cells was triggered by the induced expression of zwf and the resultant increase in G6PDH activity. When we silenced zwf using CRISPR-Cas9 technology, we observed a significant rise in the growth rate of Msm. Therefore, we have found that depletion of G6P in glucose-grown cells due to increased G6PDH activity is at least one reason why the growth rate of Msm in glucose is less than glycerol. However, we could not establish a similar link-up between slow growth in glucose and lowering of G6P level in the case of Mycobacterium tuberculosis (Mtb). Mycobacteria, therefore, may have evolved diverse mechanisms to ensure that they use glycerol preferentially over glucose for their growth.


2013 ◽  
Vol 2 (1) ◽  
pp. 158 ◽  
Author(s):  
Dolar Pak ◽  
Arunachalam Muthaiyan ◽  
Robert S. Story ◽  
Corliss A. O'Bryan ◽  
Sun-Ok Lee ◽  
...  

<p>A fermentation study of three probiotic <em>Lactobacillus</em> strains was conducted on individual carbohydrates including glucose (GLU) high methoxy pectin (HMP), sugar beet pectin (SBP), fructooligosaccharide (FOS), galactooligosaccharide (GOS), and inulin agave (IA) as the sole carbon sources. It was observed that <em>Lactobacillus bulgaricus </em>(LB), <em>Lactobacillus casei</em> (LC) and <em>Lactobacillus delbruckii</em> (LD) achieved the highest growth rates when they were grown in the presence of GLU, FOS, and IA, but LB had a slower growth rate in these substrates compared to LC and LD. Only LC had a statistically significantly higher growth rate in GOS than in the basal medium which contained no carbohydrate source. Exposure to bile caused a significant reduction of log colony forming units/ml of all 3 strains, with LD grown in HMP exhibiting the highest survival followed by LC and LD grown in GLU, and LD grown on IA. Although HMP was not fermented by the test organisms, results indicate that HMP may in fact help certain probiotic bacteria to survive exposure to bile. Exposure to simulated gastric juices indicated that the studied <em>Lactobacilli</em> are tolerant to simulated gastric juice.</p>


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 793
Author(s):  
Fahad Al-Mubaddel ◽  
Samsudeen Kasim ◽  
Ahmed A. Ibrahim ◽  
Abdulrhman S. Al-Awadi ◽  
Anis H. Fakeeha ◽  
...  

An environmentally-benign way of producing hydrogen is methane decomposition. This study focused on methane decomposition using Fe and Fe-Ni catalysts, which were dispersed over different supports by the wet-impregnation method. We observed the effect of modifying ZrO2 with La2O3 and WO3 in terms of H2 yield and carbon deposits. The modification led to a higher H2 yield in all cases and WO3-modified support gave the highest yield of about 90% and was stable throughout the reaction period. The reaction conditions were at 1 atm, 800 °C, and 4000 mL(hgcat)−1 space velocity. Adding Ni to Fe/x-ZrO2 gave a higher H2 yield and stability for ZrO2 and La2O3 + ZrO2-supported catalysts whose prior performances and stabilities were very poor. Catalyst samples were analyzed by characterization techniques like X-ray diffraction (XRD), nitrogen physisorption, temperature-programmed reduction (TPR), thermo-gravimetric analysis (TGA), and Raman spectroscopy. The phases of iron and the supports were identified using XRD while the BET revealed a significant decrease in the specific surface areas of fresh catalysts relative to supports. A progressive change in Fe’s oxidation state from Fe3+ to Fe0 was observed from the H2-TPR results. The carbon deposits on Fe/ZrO2 and Fe/La2O3 + ZrO2 are mainly amorphous, while Fe/WO3 + ZrO2 and Fe-Ni/x-ZrO2 are characterized by graphitic carbon.


2012 ◽  
Author(s):  
Mohd. Sahaid Hj. Kalil ◽  
Muhammad Zaki ◽  
Wan Mohtar Wan Yusoff ◽  
Mohammad Ramlan Mohd. Salleh

Penyelidikan ini bertujuan untuk menyaring substrat organik bagi untuk penghasilan sel–sel A. woodii teraruh demetilase. Pertumbuhan A. woodii dilakukan dalam medium “Balch” yang mengandungi sumber karbon berbeza dalam keadaan anaerobik. Sebanyak sebelas substrat telah diuji iaitu anisol, 2– dan 3–metoksifenol, asid vanilik, asid siringik, asid 2,3,4–, 2,4,5– dan 3,4,5–trimetoksi benzoik, 2,3,4–, 2,4,5– dan 3,4,5–trimetoksi benzil alkohol. 2–metoksifenol merupakan substrat terbaik untuk pertumbuhan A. woodii pada kadar pertumbuhan spesifik 0.14 j–1. Penghasilan sel–sel teraruh demetilase dilakukan dalam kultur kemostat pada kadar pencairan (D) 0.0j–1. Sel-sel pada keadaan mantap dituai dalam keadaan anaerobik dan dipekatkan sebelum digunakan. Pertumbuhan A. woodii didapati maksimum dengan menggunakan kepekatan 0.62 g/L 2–metoksifenol sebagai sumber karbon tunggal. Tindak balas penyahmetilan oleh sel–sel A. woodii meningkat sebanyak 78% apabila 2–metoksifenol sebanyak 0.31 g/L ditambah dalam medium yang mengandungi fruktosa (1% w/v) semasa kultur kemostat. Kata kunci: tindak balas penyahmetilan; demetilase; sel-sel tertuai; metosiaromatik, Acetobacteriumwoodii The objective of this project was to screen organic substrate suitable for the growth of A. woodii, and as for the production of demethylase. A. woodii was grown in “Balch” medium containing different carbon sources. Eleven substrates were tested including anisole, 2– and 3–methoxyphenol, vanilic acid, syringic acid, 2,3,4–, 2,4,5– and 3,4,5–trimethoxy benzoic acid and 2,3,4–, 2,4,5– and 3,4,5–trimethoxy benzyl alcohol. It was found that 2–methoxyphenol was the best substrate with a specific growth rate of 0.14 h–1. The production of demethylase induced cells was carried out in a chemostat culture at a dilution rate (D) of 0.08 h–1. Cells were harvested at steady state of growth and concentrated before use. Optimal concentration of 2–methoxvphenol as the sole carbon source was 0.62 g/L. Demethylation reaction of 0.31 g/L 2–methoxyphenol by induced culture increases 78% relative to the chemostat culture containing only fructose. Key words: Demethylation reaction; demethylase; harvested cells; methoxyaromatic; Acetobacteriumwoodii


Sign in / Sign up

Export Citation Format

Share Document