scholarly journals Phosphodiesterase 8A Regulates CFTR Activity in Airway Epithelial Cells

2021 ◽  
Vol 55 (6) ◽  
pp. 784-804

BACKGROUND/AIMS: Cystic fibrosis transmembrane conductance regulator (CFTR), the anion channel that is defective in cystic fibrosis (CF), is phosphorylated and activated by cAMP-dependent protein kinase (PKA). cAMP levels are downregulated by a large family of phosphodiesterases that have variable expression in different cell types. We have previously observed high levels of PDE8A expression in well-differentiated primary human bronchial epithelial (pHBE) cells and thus aimed to assess whether it played a role in cAMP-dependent regulation of CFTR activity. METHODS: We assessed the effect of the selective PDE8 inhibitor PF-04957325 (PF) on intracellular cAMP levels ([cAMP]i) in well differentiated pHBE cells from non-CF or CF donors and also in CFBE41o- cells that stably express wild-type CFTR (CFBE41o- WT) using ELISA and FRET-FLIM microscopy. CFTR channel function was also measured using electrophysiological recordings from pHBE and CFBE41o- WT cells mounted in Ussing Chambers. RESULTS: PDE8 inhibition elevated [cAMP]i in well-differentiated pHBE cells and stimulated wild-type CFTR-dependent ion transport under basal conditions or after cells had been pre-stimulated with physiological cAMP-elevating agents. The response to PDE8 inhibition was larger than to PDE3 or PDE5 inhibition but smaller and synergistic with that elicited by PDE4 inhibition. CRISPR Cas9-mediated knockdown of PDE8A enhanced CFTR gene and protein expression yet reduced the effect of PDE8 inhibition. Acute pharmacological inhibition PDE8 increased CFTR activity in CF pHBE cells (F508del/F508del and F508del/R117H-5T) treated with clinically-approved CFTR modulators. CONCLUSION: These results provide the first evidence that PDE8A regulates CFTR and identifies PDE8A as a potential target for adjunct therapies to treat CF.

Genetics ◽  
1999 ◽  
Vol 151 (1) ◽  
pp. 107-117
Author(s):  
Qi Yang ◽  
Katherine A Borkovich

Abstract Heterotrimeric G proteins, consisting of α, β, and γ subunits, transduce environmental signals through coupling to plasma membrane-localized receptors. We previously reported that the filamentous fungus Neurospora crassa possesses a Gα protein, GNA-1, that is a member of the Gαi superfamily. Deletion of gna-1 leads to defects in apical extension, differentiation of asexual spores, sensitivity to hyperosmotic media, and female fertility. In addition, Δgna-1 strains have lower intracellular cAMP levels under conditions that promote morphological abnormalities. To further define the function of GNA-1 in signal transduction in N. crassa, we examined properties of strains with mutationally activated gna-1 alleles (R178C or Q204L) as the only source of GNA-1 protein. These mutations are predicted to inhibit the GTPase activity of GNA-1 and lead to constitutive signaling. In the sexual cycle, gna-1R178C and gna-1Q204L strains are female-fertile, but produce fewer and larger perithecia than wild type. During asexual development, gna-1R178C and gna-1Q204L strains elaborate abundant, long aerial hyphae, produce less conidia, and possess lower levels of carotenoid pigments in comparison to wild-type controls. Furthermore, gna-1R178C and gna-1Q204L strains are more sensitive to heat shock and exposure to hydrogen peroxide than wild-type strains, while Δgna-1 mutants are more resistant. In contrast to Δgna-1 mutants, gna-1R178C and gna-1Q204L strains have higher steady-state levels of cAMP than wild type. The results suggest that GNA-1 possesses several Gβγ-independent functions in N. crassa. We propose that GNA-1 mediates signal transduction pathway(s) that regulate aerial hyphae development and sensitivity to heat and oxidative stresses, possibly through modulation of cAMP levels.


1998 ◽  
Vol 274 (4) ◽  
pp. C904-C913 ◽  
Author(s):  
R. Tarran ◽  
M. A. Gray ◽  
M. J. Evans ◽  
W. H. Colledge ◽  
R. Ratcliff ◽  
...  

We have isolated ciliated respiratory cells from the nasal epithelium of wild-type and cystic fibrosis (CF) null mice and used the patch-clamp technique to investigate their basal conductances. Current-clamp experiments on unstimulated cells indicated the presence of K+ and Cl− conductances and, under certain conditions, a small Na+conductance. Voltage-clamp experiments revealed three distinct Cl− conductances. I tv-indep was time and voltage independent with a linear current-voltage ( I- V) plot; I v-actexhibited activation at potentials greater than ±50 mV, giving an S-shaped I- Vplot; and I hyp-act was activated by hyperpolarizing potentials and had an inwardly rectified I- Vplot. The current density sequence was I hyp-act = I v-act ≫ I tv-indep. These conductances had Cl−-to- N-methyl-d-glucamine cation permeability ratios of between 2.8 and 10.3 and were unaffected by tamoxifen, flufenamate, glibenclamide, DIDS, and 5-nitro-2-(3-phenylpropylamino) benzoic acid but were inhibited by Zn2+ and Gd3+. I tv-indep and I v-act were present in wild-type and CF cells at equal density and frequency. However, I hyp-actwas detected in only 3% of CF cells compared with 26% of wild-type cells, suggesting that this conductance may be modulated by cystic fibrosis transmembrane conductance regulator (CFTR).


2007 ◽  
Vol 292 (4) ◽  
pp. C1409-C1416 ◽  
Author(s):  
Boglarka Banizs ◽  
Peter Komlosi ◽  
Mark O. Bevensee ◽  
Erik M. Schwiebert ◽  
Phillip D. Bell ◽  
...  

Tg737 orpk mice have defects in cilia assembly and develop hydrocephalus in the perinatal period of life. Hydrocephalus is progressive and is thought to be initiated by abnormal ion and water transport across the choroid plexus epithelium. The pathology is further aggravated by the slow and disorganized beating of motile cilia on ependymal cells that contribute to decreased cerebrospinal fluid movement through the ventricles. Previously, we demonstrated that the hydrocephalus phenotype is associated with a marked increase in intracellular cAMP levels in choroid plexus epithelium, which is known to have regulatory effects on ion and fluid movement in many secretory epithelia. To evaluate whether the hydrocephalus in Tg737 orpk mutants is associated with defects in ion transport, we compared the steady-state pHi and Na+-dependent transport activities of isolated choroid plexus epithelium tissue from Tg737 orpk mutant and wild-type mice. The data indicate that Tg737 orpk mutant choroid plexus epithelium have lower pHi and higher Na+-dependent HCO3− transport activity compared with wild-type choroid plexus epithelium. In addition, wild-type choroid plexus epithelium could be converted to a mutant phenotype with regard to the activity of Na+-dependent HCO3− transport by addition of dibutyryl-cAMP and mutant choroid plexus epithelium toward the wild-type phenotype by inhibiting PKA activity with H-89. Together, these data suggest that cilia have an important role in regulating normal physiology of choroid plexus epithelium and that ciliary dysfunction in Tg737 orpk mutants disrupts a signaling pathway leading to elevated intracellular cAMP levels and aberrant regulation of pHi and ion transport activity.


2012 ◽  
Vol 303 (2) ◽  
pp. L97-L106 ◽  
Author(s):  
Shilpa Nimishakavi ◽  
Marina Besprozvannaya ◽  
Wilfred W. Raymond ◽  
Charles S. Craik ◽  
Dieter C. Gruenert ◽  
...  

Prostasin is a membrane-anchored protease expressed in airway epithelium, where it stimulates salt and water uptake by cleaving the epithelial Na+ channel (ENaC). Prostasin is activated by another transmembrane tryptic protease, matriptase. Because ENaC-mediated dehydration contributes to cystic fibrosis (CF), prostasin and matriptase are potential therapeutic targets, but their catalytic competence on airway epithelial surfaces has been unclear. Seeking tools for exploring sites and modulation of activity, we used recombinant prostasin and matriptase to identify substrate t-butyloxycarbonyl-l-Gln-Ala-Arg-4-nitroanilide (QAR-4NA), which allowed direct assay of proteases in living cells. Comparisons of bronchial epithelial cells (CFBE41o−) with and without functioning cystic fibrosis transmembrane conductance regulator (CFTR) revealed similar levels of apical and basolateral aprotinin-inhibitable activity. Although recombinant matriptase was more active than prostasin in hydrolyzing QAR-4NA, cell surface activity resisted matriptase-selective inhibition, suggesting that prostasin dominates. Surface biotinylation revealed similar expression of matriptase and prostasin in epithelial cells expressing wild-type vs. ΔF508-mutated CFTR. However, the ratio of mature to inactive proprostasin suggested surface enrichment of active enzyme. Although small amounts of matriptase and prostasin were shed spontaneously, prostasin anchored to the cell surface by glycosylphosphatidylinositol was the major contributor to observed QAR-4NA-hydrolyzing activity. For example, the apical surface of wild-type CFBE41o− epithelial cells express 22% of total, extractable, aprotinin-inhibitable, QAR-4NA-hydrolyzing activity and 16% of prostasin immunoreactivity. In conclusion, prostasin is present, mature and active on the apical surface of wild-type and CF bronchial epithelial cells, where it can be targeted for inhibition via the airway lumen.


1986 ◽  
Vol 251 (4) ◽  
pp. R818-R822 ◽  
Author(s):  
J. H. Widdicombe

Confluent cell sheets were cultured from the tracheal epithelium of normal humans or from tracheal and nasal epithelia of patients with cystic fibrosis (CF). Changes in short-circuit current (Isc) or cyclic AMP (cAMP) levels in response to 10(-5) M isoproterenol were measured. In CF tracheal cells the response to isoproterenol was transient, and the maximal increase in Isc was one-tenth normal. In CF nasal cells, isoproterenol or epinephrine caused only small transient increases in Isc. However, in both CF nasal and tracheal cells, the Ca ionophore, A23187, caused relatively large increases in Isc that were inhibited by the Cl transport blocker, bumetanide, suggesting that Cl secretion can be induced by raising intracellular levels of Ca. In normal tracheal cell sheets, cAMP levels increased within 15 s of isoproterenol addition and continued to increase for up to 20 min. Resting levels of cAMP in CF tracheal cells were not statistically different from those of normal cells and showed linear increases for up to 4 min after addition of isoproterenol. Changes in cAMP in CF nasal cells were similar to the changes in CF tracheal cells. After 2 min, all three cell types showed cAMP levels elevated approximately equal to 10-fold. These results suggest that receptor-activated stimulation of adenylate cyclase is normal in CF. However, though raised cAMP levels stimulate Cl secretion in normal, they are unable to do so in CF airway epithelial cells.


2008 ◽  
Vol 295 (5) ◽  
pp. L933-L940 ◽  
Author(s):  
Kelvin D. MacDonald ◽  
Karen R. McKenzie ◽  
Mark J. Henderson ◽  
Charles E. Hawkins ◽  
Neeraj Vij ◽  
...  

Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl− transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 μM lubiprostone was −5.8 ± 2.1 mV (CF, n = 12), −8.1 ± 2.6 mV (C57Bl/6 wild-type, n = 12), and −5.3 ± 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 μM lubiprostone ( n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia.


1994 ◽  
Vol 266 (5) ◽  
pp. C1464-C1477 ◽  
Author(s):  
E. M. Schwiebert ◽  
T. Flotte ◽  
G. R. Cutting ◽  
W. B. Guggino

From whole cell patch-clamp recordings at 35 degrees C utilizing either nystatin perforation or conventional methods with 5 mM MgATP in the pipette solution, it was demonstrated that both cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl-) channels and outwardly rectifying Cl- channels (ORCC) contribute to adenosine 3',5'-cyclic monophosphate (cAMP)-activated whole cell Cl- currents in cultured human airway epithelial cells. These results were similar whether recordings were performed on two normal human cell lines or on two cystic fibrosis (CF) cell lines stably complemented with wild-type CF gene. These results were obtained by exploiting dissimilar biophysical properties of CFTR and ORCC currents such as the degree of rectification of the current-voltage relationship, the difference in sensitivity to Cl- channel-blocking drugs such as 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), calixarenes, and diphenylamine carboxylic acid (DPC), and the opposing Cl- relative to I- permeabilities of the two channels. In normal cells or complemented CF cells, 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate stimulated outwardly rectifying whole cell Cl- currents. Addition of DIDS in the presence of cAMP inhibited the outwardly rectifying portion of the cAMP-activated Cl- current. The remaining cAMP-activated, DIDS-insensitive, linear CFTR Cl- current was inhibited completely by DPC. Additional results showed that not only do ORCC and CFTR Cl- channels contribute to cAMP-activated Cl- currents in airway epithelial cells where wild-type CFTR is expressed but that both channels fail to respond to cAMP in delta F508-CFTR-containing CF airway cells. We conclude that CFTR not only functions as a cAMP-regulated Cl- channel in airway epithelial cells but also controls the regulation of ORCC.


2016 ◽  
Vol 310 (3) ◽  
pp. L263-L270 ◽  
Author(s):  
Khalequz Zaman ◽  
Victoria Sawczak ◽  
Atiya Zaidi ◽  
Maya Butler ◽  
Deric Bennett ◽  
...  

S-nitrosoglutathione (GSNO) reductase regulates novel endogenous S-nitrosothiol signaling pathways, and mice deficient in GSNO reductase are protected from airways hyperreactivity. S-nitrosothiols are present in the airway, and patients with cystic fibrosis (CF) tend to have low S-nitrosothiol levels that may be attributed to upregulation of GSNO reductase activity. The present study demonstrates that 1) GSNO reductase activity is increased in the cystic fibrosis bronchial epithelial (CFBE41o−) cells expressing mutant F508del-cystic fibrosis transmembrane regulator (CFTR) compared with the wild-type CFBE41o− cells, 2) GSNO reductase expression level is increased in the primary human bronchial epithelial cells expressing mutant F508del-CFTR compared with the wild-type cells, 3) GSNO reductase colocalizes with cochaperone Hsp70/Hsp90 organizing protein (Hop; Stip1) in human airway epithelial cells, 4) GSNO reductase knockdown with siRNA increases the expression and maturation of CFTR and decreases Stip1 expression in human airway epithelial cells, 5) increased levels of GSNO reductase cause a decrease in maturation of CFTR, and 6) a GSNO reductase inhibitor effectively reverses the effects of GSNO reductase on CFTR maturation. These studies provide a novel approach to define the subcellular location of the interactions between Stip1 and GSNO reductase and the role of S-nitrosothiols in these interactions.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yechan Kim ◽  
Vincent Hou ◽  
Ryan D. Huff ◽  
Jennifer A. Aguiar ◽  
Spencer Revill ◽  
...  

Abstract Introduction Over 300 million people in the world live with asthma, resulting in 500,000 annual global deaths with future increases expected. It is estimated that around 50–80% of asthma exacerbations are due to viral infections. Currently, a combination of long-acting beta agonists (LABA) for bronchodilation and glucocorticoids (GCS) to control lung inflammation represent the dominant strategy for the management of asthma, however, it is still sub-optimal in 35–50% of moderate-severe asthmatics resulting in persistent lung inflammation, impairment of lung function, and risk of mortality. Mechanistically, LABA/GCS combination therapy results in synergistic efficacy mediated by intracellular cyclic adenosine monophosphate (cAMP). Hypothesis Increasing intracellular cAMP during LABA/GCS combination therapy via inhibiting phosphodiesterase 4 (PDE4) and/or blocking the export of cAMP by ATP Binding Cassette Transporter C4 (ABCC4), will potentiate anti-inflammatory responses of mainstay LABA/GCS therapy. Methods Expression and localization experiments were performed using in situ hybridization and immunohistochemistry in human lung tissue from healthy subjects, while confirmatory transcript and protein expression analyses were performed in primary human airway epithelial cells and cell lines. Intervention experiments were performed on the human airway epithelial cell line, HBEC-6KT, by pre-treatment with combinations of LABA/GCS with PDE4 and/or ABCC4 inhibitors followed by Poly I:C or imiquimod challenge as a model for viral stimuli. Cytokine readouts for IL-6, IL-8, CXCL10/IP-10, and CCL5/RANTES were quantified by ELISA. Results Using archived human lung and human airway epithelial cells, ABCC4 gene and protein expression were confirmed in vitro and in situ. LABA/GCS attenuation of Poly I:C or imiquimod-induced IL-6 and IL-8 were potentiated with ABCC4 and PDE4 inhibition, which was greater when ABCC4 and PDE4 inhibition was combined. Modulation of cAMP levels had no impact on LABA/GCS modulation of Poly I:C-induced CXCL10/IP-10 or CCL5/RANTES. Conclusion Modulation of intracellular cAMP levels by PDE4 or ABCC4 inhibition potentiates LABA/GCS efficacy in human airway epithelial cells challenged with viral stimuli. The data suggest further exploration of the value of adding cAMP modulators to mainstay LABA/GCS therapy in asthma for potentiated anti-inflammatory efficacy.


Sign in / Sign up

Export Citation Format

Share Document