scholarly journals Specialties of the structure and conductivity of the non-aqueous electrolytes based on alkali metal bis (salicyl) borates and bis (oxalate) borates

2019 ◽  
Vol 85 (3) ◽  
pp. 49-55
Author(s):  
Viktor Diamant ◽  
Volodymyr Trachevskii ◽  
Katherine Pershina ◽  
Volodymyr Ogenko ◽  
Chen Donchu ◽  
...  

The structure and coordination environment of non-aqueous electrolytes based on bis(salicyl)borates of lithium, sodium, potassium, tetramethylammonium (MeBSB) and bis(oxalato)borates from lithium to cesium (MeBOB) using NMR spectroscopy have been investigated. Bis(salicyl)borates (BSB) and bis(oxalate)borates (BOB) of alkali metals and organic cations are considered as promising electroconductive components of electrolytes of modern chemical sources of current (lithium, sodium ion batteries and super-capacitors). The salts were synthesized by the microwave radiation method. The 13C and 11B NMR spectra analysis determined the presence of symmetric structure in BOB anion and the presence of two optical conformations of the BSB anion with labile coordination environment of boron. The conformations of the BSB are the result of the ion contact pairs formation. In the case of tetramethylammonium cation the presence of conformations are depended on the reactive medium. The conformational lability of the coordination sphere of NaBSB dissolved in DMAA is connected with increasing of the integral intensity of carboxyl group singles relatively signals of carbon atoms in fragments of another functional affiliation when the time delay between radio frequencies varies within 2-15 seconds. The difference in the structure of these anions leads to a change in the thermal dependence of the electrical conductivity of BSB and the transport of ions in non-aqueous solvents. Maximum electrical conductivity of salt solutions in DMFA is achieved at close concentrations of 0.75 m for KBSB and 0.77-1 m for NaBSB. The solubility of BSB is better than the BOB. Based on the measurements of the conductivity and the data of electrochemical impedance spectroscopy (the angle of inclination of spectra in the Nyquist coordinates in the low frequency range, the phase angle shift at a frequency) it was proposed the existence of two ways of ions and charge transfer in the electrolytes: diffusion and relay transport. The possibility of formation of a labile salt complex with a solvent due to hydrogen bonds is established.  

2019 ◽  
Vol 85 (3) ◽  
pp. 49-55
Author(s):  
Viktor Diamant ◽  
Volodymyr Trachevskii ◽  
Katherine Pershina ◽  
Volodymyr Ogenko ◽  
Chen Donchu ◽  
...  

The structure and coordination environment of non-aqueous electrolytes based on bis(salicyl)borates of lithium, sodium, potassium, tetramethylammonium (MeBSB) and bis(oxalato)borates from lithium to cesium (MeBOB) using NMR spectroscopy have been investigated. Bis(salicyl)borates (BSB) and bis(oxalate)borates (BOB) of alkali metals and organic cations are considered as promising electroconductive components of electrolytes of modern chemical sources of current (lithium, sodium ion batteries and super-capacitors). The salts were synthesized by the microwave radiation method. The 13C and 11B NMR spectra analysis determined the presence of symmetric structure in BOB anion and the presence of two optical conformations of the BSB anion with labile coordination environment of boron. The conformations of the BSB are the result of the ion contact pairs formation. In the case of tetramethylammonium cation the presence of conformations are depended on the reactive medium. The conformational lability of the coordination sphere of NaBSB dissolved in DMAA is connected with increasing of the integral intensity of carboxyl group singles relatively signals of carbon atoms in fragments of another functional affiliation when the time delay between radio frequencies varies within 2-15 seconds. The difference in the structure of these anions leads to a change in the thermal dependence of the electrical conductivity of BSB and the transport of ions in non-aqueous solvents. Maximum electrical conductivity of salt solutions in DMFA is achieved at close concentrations of 0.75 m for KBSB and 0.77-1 m for NaBSB. The solubility of BSB is better than the BOB. Based on the measurements of the conductivity and the data of electrochemical impedance spectroscopy (the angle of inclination of spectra in the Nyquist coordinates in the low frequency range, the phase angle shift at a frequency) it was proposed the existence of two ways of ions and charge transfer in the electrolytes: diffusion and relay transport. The possibility of formation of a labile salt complex with a solvent due to hydrogen bonds is established.  


1987 ◽  
Vol 33 (114) ◽  
pp. 239-242
Author(s):  
M. E. R. Walford

AbstractWe discuss the suggestion that small underwater transmitters might be used to illuminate the interior of major englacial water channels with radio waves. Once launched, the radio waves would naturally tend to be guided along the channels until attenuated by absorption and by radiative loss. Receivers placed within the channels or at the glacier surface could be used to detect the signals. They would provide valuable information about the connectivity of the water system. The electrical conductivity of the water is of crucial importance. A surface stream on Storglaciären, in Sweden, was found, using a low-frequency technique, to have a conductivity of approximately 4 × 10−4 S m−1. Although this is several hundred times higher than the conductivity of the surrounding glacier ice, the contrast is not sufficient to permit us simply to use electrical conductivity measurements to establish the connectivity of englacial water channels. However, the water conductivity is sufficiently small that, under favourable circumstances, radio signals should be detectable after travelling as much as a few hundred metres along an englacial water channel. In a preliminary field experiment, we demonstrated semi quantitatively that radio waves do indeed propagate as expected, at least in surface streams. We conclude that under-water radio transmitters could be of real practical value in the study of the englacial water system, provided that sufficiently robust devices can be constructed. In a subglacial channel, however, we expect the radio range would be much smaller, the environment much harsher, and the technique of less practical value.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adrian Radoń ◽  
Dariusz Łukowiec ◽  
Patryk Włodarczyk

AbstractThe dielectric properties and electrical conduction mechanism of bismuth oxychloride (BiOCl) plates synthesized using chloramine-T as the chloride ion source were investigated. Thermally-activated structure rebuilding was monitored using broadband dielectric spectroscopy, which showed that the onset temperature of this process was 283 K. This rebuilding was related to the introduction of free chloride ions into [Bi2O2]2+ layers and their growth, which increased the intensity of the (101) diffraction peak. The electrical conductivity and dielectric permittivity were related to the movement of chloride ions between plates (in the low-frequency region), the interplanar motion of Cl− ions at higher frequencies, vibrations of these ions, and charge carrier hopping at frequencies above 10 kHz. The influence of the free chloride ion concentration on the electrical conductivity was also described. Structure rebuilding was associated with a lower concentration of free chloride ions, which significantly decreased the conductivity. According to the analysis, the BiOCl plate conductivity was related to the movement of Cl− ions, not electrons.


Batteries ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 36
Author(s):  
Erik Goldammer ◽  
Julia Kowal

The distribution of relaxation times (DRT) analysis of impedance spectra is a proven method to determine the number of occurring polarization processes in lithium-ion batteries (LIBs), their polarization contributions and characteristic time constants. Direct measurement of a spectrum by means of electrochemical impedance spectroscopy (EIS), however, suffers from a high expenditure of time for low-frequency impedances and a lack of general availability in most online applications. In this study, a method is presented to derive the DRT by evaluating the relaxation voltage after a current pulse. The method was experimentally validated using both EIS and the proposed pulse evaluation to determine the DRT of automotive pouch-cells and an aging study was carried out. The DRT derived from time domain data provided improved resolution of processes with large time constants and therefore enabled changes in low-frequency impedance and the correlated degradation mechanisms to be identified. One of the polarization contributions identified could be determined as an indicator for the potential risk of plating. The novel, general approach for batteries was tested with a sampling rate of 10 Hz and only requires relaxation periods. Therefore, the method is applicable in battery management systems and contributes to improving the reliability and safety of LIBs.


2017 ◽  
Vol 31 (12) ◽  
pp. 1750134 ◽  
Author(s):  
Oktay Samadov ◽  
Oktay Alakbarov ◽  
Arzu Najafov ◽  
Samir Samadov ◽  
Nizami Mehdiyev ◽  
...  

The dielectric and impedance spectra of TlGaSe2 crystals have been studied at temperatures in the 100–500 K range in the alternating current (AC [Formula: see text]1 V). It has been shown that the conductivity of TlGaSe2 crystals is mainly an ionic characteristic at temperatures above 400 K. The well-defined peak at the frequency dependence of the imaginary part of impedance [Formula: see text] is observed in the 215–500 K temperature range. In a constant field, there occurs a significant decrease in electrical conductivity [Formula: see text] in due course. The ionic contribution to conductivity (76% at [Formula: see text]) has been estimated from a kinetic change in electrical conductivity [Formula: see text] under the influence of a constant electric field. The diagram analysis in a complex plane [Formula: see text] has been conducted by applying the method of an equivalent circuit of the substation. It has been determined that the average relaxation time of the electric module of the sample is [Formula: see text].


2002 ◽  
Vol 67 (6) ◽  
pp. 425-436 ◽  
Author(s):  
Houy Ma ◽  
Shenhao Chen ◽  
Chao Yang ◽  
Jingli Luo

The effect of nitrate ions on the electrochemical behaviour of iron (ferrite) and two carbon steels (martensite and pearlite) in sulphate solutions of different pH values was investigated by cyclic voltammetry polarization and electrochemical impedance spectroscopy. The pitting inhibiting effect of nitrate ions on ferrite in sulphate media is pH dependent. Nitrate ions were unable to inhibit the pitting on ferrite in neutral sulphate solutions, but did effectively protect passivated ferrite from pitting in acidic sulphate solutions. No pitting occurred on the surface of the martensite and pearlite specimens in sulphate solutions regardless of the pH of the solutions. At the open-circuit corrosion potentials, the three materials underwent general corrosion. The impedance spectra for the three materials measured in neutral sulphate solutions containing nitrates and chlorides at the corrosion potentials all showed a capacitive loop, while in acidic sulphate solutions their impedance spectra were greatly reduced in size and displayed at least a low frequency impedance loop (inductive or capacitive loop) besides the well-known high frequency capacitive loop. The variation of the impedance behaviour with pH is explained.


Author(s):  
L. I. Menegbo ◽  
J. L. Konne ◽  
N. Boisa

The Electrochemical Impedance Spectroscopy (EIS) measurements of Sol-gel synthesized ZnO, CuO and their respective hydrogenated phases (ZnO:H and CuO:H) for  a proton-type battery model has been reported for the first time. The XRD patterns confirmed that CuO and ZnO were phase pure with minor impurities. However, that of CuO:H showed mixed phases of CuO and Cu2O with the later  appearing prominent. The estimated particle sizes of ZnO, ZnO:H, CuO and CuO:H obtained using Scherrers’ equation were 17.83, 17.75, 21.63 and 15.42 nm respectively, showing remarkable particle size reductions upon hydrogenation as oxygen vacancies were substituted with smaller hydrogen ions. Nyquist plots from the EIS experimental data recorded over a frequency range of 100 kHz – 5 mHz showed expected flat semicircles at the high frequency region and straight lines at the low frequency regions while resistance estimations from the intercepts of the Bode plots were 12.10, 7.80, 16.00 and 10.80 Ω for ZnO, ZnO:H, CuO and CuO:H respectively. It also indicated high gain margins suggesting impressive electrochemical properties for battery applications.


In the present paper an account is given of experimental measurements on the electrical conductivity of thin films of mercury prepared by evaporative deposition in a high vacuum according to the technique described in previous papers (Lovell 1936; Appleyard and Lovell 1937). In a brief preliminary note (Appleyard 1937) we have pointed out that the results for mercury are very different from those for the alkali metals, and that in particular a considerable thickness of mercury must be deposited on the pyrex surface before conductivity begins. We have since confirmed and extended these observations, obtained accurate absolute values for the thickness of the films, investigated their stability, and made an extended study of their temperature coefficients after heat treatment. A comparison with the results of previous workers is given later.


2016 ◽  
Vol 848 ◽  
pp. 401-410 ◽  
Author(s):  
Jia Huan Xu ◽  
Wei Han ◽  
Hui Ding ◽  
Wei Jin Chen ◽  
Jun Xiang

In3+, Gd3+ were selected as substitution elements for Ce4+ in order to increase electrical conductivity and chemical stability of BaCeO3. A modified sol-gel method was used to fabricate BaCe0.7In0.3-xGdxO3-δ (x = 0, 0.1, 0.2, 0.3) nanopowders. XRD results indicated that the diffraction angle moved to lower with increase of the Gd3 + doping concentration, so that the interplanar spacing gradually increased. The impedance spectra analysis showed that conductivity first increased (x = 0~0.2) and then decreased with the Gd3 + doping increase. The total conductivities at 800oC were 3.8 × 10-3 S·cm-1 (x = 0), 8.0 × 10-3 S· cm-1 (x = 0.1), 2.5 × 10-2 S· cm-1 (x = 0.2), 1.36 × 10-2 S ·cm-1 (x = 0.3). Chemical stability test in CO2 show that all samples except for x=0.3 sample calcination at 800oC for 2h under 100% CO2 and x=0, 0.1 samples heating in boiling water for 12h kept main perovskite structure. Therefore, x=0.1 sample show better electrical conductivity and chemical stability.


Sign in / Sign up

Export Citation Format

Share Document