scholarly journals SYNTHESIS AND LUMINESCENCE PROPERTIES OF K0,5xBi1-0,5x(MoxV1-x)O4 SOLID SOLUTIONS

2020 ◽  
Vol 86 (11) ◽  
pp. 3-12
Author(s):  
Kateryna Terebilenko ◽  
Sergii Nedilko ◽  
Olga Petrenko ◽  
Mykola Slobodyanik ◽  
Vitalii Chornii

The conditions of heterovalent substitution in cationic and anionic positions of хK0,5Bi0,5MoO4 – (1-х)BiVO4 system within range of х = 0.1-0.9 with forming of К0,5xBi1-0,5x(MoxV1-x)O4 solid solutions, those possess scheelite-like type structure have been studied. All the samples of series were obtained by solid state technique. It was shown by IR spectroscopy and X-ray diffraction studies that molybdenum and vanadium occupying one crystallographic position with statistical distribution in х = 0.1–0.9 range of substitution. As result a lowering of lattice symmetry from tetragonal to monoclinic take place with increasing of molybdenum content. Charge compensation in system is realized through proportional substitution of bismuth by potassium in (К/Bi)O8 polyhedra. The data on diffuse reflectance indicate that increasing of substitution degree, x, lead to proportional increasing of band gap values from 2.33 to 2.72 eV for the semiconductors obtained. Intrinsic photoluminescence of the samples has been observed at low temperatures but is absent at room temperature. Total intensity of visible luminescence increases with increasing of molybdenum content in К0.5xBi1-0.5x(MoxV1-x)O4 solid solutions. Spectra of photoluminescence consist of wide two-component band with maxima at 620 and 705 nm, respectively. Simultaneous analysis of literature data and dependences of luminescence intensity on molybdenum content allow assumption that short-wavelength component related with centers, those formed on molybdate groups. Long-wavelength component related with vanadate groups. The wide bands at 375 and 410 nm in the photoluminescence excitation spectra were ascribed to absorption transitions in molybdate and vanadate oxyanions, respectively. The solid solutions studied can be used as hosts for luminescent ions or in elaboration of photocatalysts.

2008 ◽  
Vol 8 (3) ◽  
pp. 1443-1448 ◽  
Author(s):  
Qingyu Meng ◽  
Baojiu Chen ◽  
Xiaoxia Zhao ◽  
Xiaojun Wang ◽  
Wu Xu

Y2O3:Ln3+ (Ln = Eu or Tb) nanocrystals with different Ln3+ doping concentrations and average sizes were prepared by chemical self-combustion. The corresponding bulk materials with various doping concentrations were obtained by annealing the nanomaterials at high temperature. The emission spectra, excitation spectra, and X-ray diffraction spectra were used in this study. It was found that the charge transfer band of Y2O3:Eu3+ red-shifted as particle size decreased, and the charge transfer band in the 5-nm particles obviously broadened toward the long wavelength. It was also found that the profile of excitation spectra corresponding to the 4f5d (4f8 → 4f75d1) transition changed a lot with the variation of the particle size. The dependence of the excitation spectra of Y2O3:Ln3+ on particle size was investigated.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


2012 ◽  
Vol 194 ◽  
pp. 187-193 ◽  
Author(s):  
J.M. Loureiro ◽  
Benilde F.O. Costa ◽  
Gerard Le Caër ◽  
Bernard Malaman

Ternary alloys, (Fe50−x/2Co50−x/2)Snx(x ≤ 33 at.%), are prepared by mechanical alloying from powder mixtures of the three elements. As-milled alloys are studied by X-ray diffraction and 57Fe and 119Sn Mössbauer spectroscopy. The solubility of Sn in near-equiatomic bcc FeCo is increased from ~0.5 at. % at equilibrium to ~20 at.% in the used milling conditions. The average 119Sn hyperfine magnetic field at room temperature is larger, for any x, than the corresponding fields in mechanically alloyed Fe-Sn solid solutions.


2011 ◽  
Vol 197-198 ◽  
pp. 417-420 ◽  
Author(s):  
Shu Cai Zhou ◽  
Chen Guang Bai ◽  
Chun Lin Fu

In order to reduce the oxidizing and volatilizing caused by Mg element in the traditional methods for synthesizing Mg2Sil-xSnxsolid solutions, Mg2Sil-xSnxsolid solutions have been prepared by Microwave-assisted Synthesis techniques. The heating behavior of Mg, Si and Sn fixed powder was investigated under microwave irradiation. X-ray diffraction (XRD) was used to characterize the powders. The results suggest that the temperature-rising rate is also dependent on the initial green density and higher green density provides lower heating rate while power setting are fixed. XRD patterns show that Mg2Sil-xSnxsolid solutions have been well formed under microwave irradiation.


1991 ◽  
Vol 231 ◽  
Author(s):  
S. D. Berry ◽  
D. M. Lind ◽  
G. Chern ◽  
H. Mathias ◽  
L. R. Testardi

AbstractWe have investigated the magnetic order, using SQUID magnetometry, for short modulation wavelength Fe3O4/NiO superlattices, grown on single crystal MgO. Ferrimagnetic Fe3O4 has a saturation moment of ~500 emu/cm3 at 0 K and a Curie temperature of 858 K, while bulk NiO is antiferromagnetic with a NMel temperature of 525 K. Very high crystalline quality with little interdiffusion is indicated by X-ray diffraction, SEM, optical microscopy, and in-situ RHEED, and the samples show highly anisotropic electrical conductivity which also indicates the strong modulation present. Long wavelength samples (Amod > 200 Å) have a behavior only slightly different from that expected from bulk Fe3O4, but for Amod<80 Å, spontaneous magnetization is replaced by paramagnetism, with weak temperature dependence (not I/T) from 5 K to 400 K.


Sign in / Sign up

Export Citation Format

Share Document