scholarly journals SYNTHESIS AND SPECTRAL CHARACTERISTICS OF HETEROMETALLIC COMPLEXES OF Pr(III) WITH Zn(II), CO(II) BASED ON ETHYLENEDIAMINETETRAACETIC AND ETHYLENEDIAMINEDISUCCINIC ACIDS

2021 ◽  
Vol 87 (3) ◽  
pp. 3-17
Author(s):  
Elena Trunova ◽  
Artem Mishchenko ◽  
Tamara Makotryk

New heterometallic f-d-complexes of Pr (III), Co(II), Zn(II) with aminopolycarboxylic acids (ethylenediaminetetraacetic, ethylenediaminedisuccinic acids) have been synthesized and spectroscopically characterized. It was found that complexes with a molar ratio of Pr:M3d: EDTA=1:2:2 are formed for ethylenediaminetetraacetic compounds, and that in the case of complexes based on EDDS, heteronuclear compounds of the equimolar composition Pr: M3d: EDDS = 1: 1: 1 are formed. It is shown that it is expedient to carry out the synthesis of heterometallic complexes on the basis of mono­nuclear polycarboxylates of 3d metals, which act as a «building block» for the preparation of a heterobinuclear compound by the exo coordination of additional metal ions. The complexes are characterized by the method of electron absorption spectroscopy. It is shown that independent of 3d-metal, for both heterometallic systems based on EDDS, a hypsochromic shift of the absorption maxima relative to νmax is observed for the homonuclear praseodymium complex. For ethylenediaminetetraacetate systems, the absorption maxima undergo both low- and high-frequency shift, which indicates the different nature of the ligand field effect, which is caused primarily by differences in the structure of the corresponding heteronuclearaminopolycarboxylates due to the presence of a chiral carbon atom in the EDDS molecule. For the supersensitive transitions Pr(III)) 3H4 →3P2 and 3H4 → 1D2 , the covalence parameters of the Ln-O bond have been calculated: osci­llator power (P), nepheloxetic parameter (β), covalence parameter (b1/2), Sinha parameter (δ). Analysis of the spectroscopic parameters indicates a decrease in the covalence of the lanthanide-ligand bond in the transition from mono- to heteronuclear complex, and a decrease in the local symmetry of the lanthanide ion occurs in the order Ln (III) aqua ion <hete­rometallic complex <monometallic complex. Heteronuclear complexes are several orders of magnitude more stable than mononuclear ones due to the formation of additional bonds or metallacycles with donor ligand atoms. It is noted that the stability of complexes with EDDS is lower than that of the corresponding complexes with EDTA due to the different size and number of chelated metallacycles. The obtained heteronuclear complexes belong to folded complexes, in which the ligand-complexone realizes the maximum denticity to the lanthanide ion, and the coordination sphere of the 3d-cation is formed by carboxyl groups EDTA / EDDS and inner-sphere water molecules. In this case, the ions of 3d-metals are in a distorted octahedral environment, and the coordination number of Pr(III) is 8.

2020 ◽  
Vol 73 (6) ◽  
pp. 529
Author(s):  
Eric J. Chan ◽  
Simon A. Cotton ◽  
Jack M. Harrowfield ◽  
Brian W. Skelton ◽  
Alexandre N. Sobolev ◽  
...  

Reactions of the lanthanide(iii) picrates (picrate=2,4,6-trinitrophenoxide=pic) with 1,10-phenanthroline (phen) and 2,2′:6′,2′′-terpyridine (terpy) in a 1:2 molar ratio have provided crystals suitable for X-ray structure determinations in instances predominantly involving the lighter lanthanides. In all, the aza-aromatic ligands chelate the lanthanide ion, none being found as ‘free’ ligands within the lattice. The complexes of 1,10-phenanthroline have been characterised in two forms, one unsolvated (Ln=La, Sm, Eu; monoclinic, C2/c, Z 8), one an acetonitrile monosolvate (Ln=Gd; monoclinic, P21/a, Z 4), the latter being the only previously known form (with Ln=La). In both forms, the LnIII is nine-coordinate, in an approximately tricapped trigonal-prismatic environment, with two picrate ligands chelating through phenoxide and 2-nitro group oxygen atoms, the third being bound through phenoxide-O only. The 2,2′:6′,2′′-terpyridine complexes, all acetonitrile monosolvates defined for Ln=La, Gd, Er, and Y (monoclinic, C2/c, Z 4), are ionic, one picrate having been displaced from the primary coordination sphere. For Ln=La, the two bound picrates are again chelating, making the LaIII 10-coordinate in a distorted bicapped square-antiprismatic environment but in the other species they are bound through phenoxide-O only, making the LnIII ions eight-coordinate in a distorted square-antiprismatic environment. Stacked arrays of the ligands can be found in both series of complexes, with intramolecular picrate–picrate and picrate–aza-aromatic stacks being prominent features.


2018 ◽  
Vol 5 (12) ◽  
pp. 180787
Author(s):  
Liang Furong ◽  
Liu Weijun ◽  
Han Xiuxiu ◽  
Zhang Boru ◽  
Zhang Shuhua

Taking potassium hexatitanate whisker (PTW) modified by silane coupling agent KH550, aluminium nitrate inorganic salt and tetraethyl orthosilicate and deionized water, respectively, as infrared sunscreen, aluminium source and raw materials forming the network structure of a composite xerogel, a series of structurally intact PTW-doped Al 2 O 3 –SiO 2 composite xerogel thermal-insulating materials were prepared by the sol–gel method and dried under atmospheric pressure. The infrared spectral characteristics, infrared radiation transmittance, microstructures, morphology and thermal conductivity of different composite materials prepared have been determined by a Fourier transform infrared spectrometer, UV–visible–near-infrared spectrophotometer, X-ray diffractometer, scanning electron microscope and thermal conductivity tester. The results exhibit that when the Al to Si molar ratio is 1 : 9, the composite material with 5 wt% modified PTW shows the best infrared radiation blocking performance and the lowest thermal conductivity (0.0604 W m −1 K −1 ).


Author(s):  
Galina R. Berezina ◽  
Margarita N. Medvedeva

This communication is a continuation of the systematic research of the authors in the field of synthesis and study of the properties of macroheterocyclic compounds. The great potential for structural modification allows us to synthesize macroheterocyclic compounds that differ in composition and the nature of the heteroatoms that make up them and make this class of compounds promising from the point of view of the design for the preparation of substances with valuable practical properties. The interaction of N,N/-bis-(1-imino-2-phenyl-1H-indene-3-iliden)-1,4-phenylenediamine with 2,5-dimiano-1,3,4-thiadiazole and 3,5-diamino-1,2,4-thiadiazole the macroheterocyclic compounds of asymmetric structure were synthesized in the molar ratio of the initial substances. Macroheterocycles are powdered substances with different shades of red color, having melting and crystallization temperatures (investigated in the argon current), soluble in chloroform, DMF, acetone, ethanol. Purification was carried out by column chromatography on aluminum oxide of II degree of activity on Brockman (eluent acetone - chloroform, 1:9 by volume). Identification of synthesis products was performed by thin-layer chromatography on Silufol UV-254 plates (eluent – acetone - chloroform, 1:1 by volume). The obtained compounds were characterized by infrared and electron spectroscopy. The electronic absorption spectra were measured on a Hitachi U-2010 instrument in quartz cuvettes at 20 °C. IR spectra were obtained on the Avatar 360 FT-IR ESP device in KVG. Elemental analysis data were obtained using the CHNS-O Analyzer FlashEA of 1112 Series.  A bathochromic shift of the absorption bands was noted when the compound with 1,3,4-thiadiazole was closed in a cycle. The spectral characteristics indicate that the molecules of the synthesized compounds do not have a flat structure and the absorption is due to individual fragments that are part of the molecules of the synthesized structures.  


1982 ◽  
Vol 37 (1-2) ◽  
pp. 31-39 ◽  
Author(s):  
Hans J. Rurainski ◽  
Richard Gerhardt ◽  
Gerhard Mader

Excitation of isolated chloroplasts in the presence of ferredoxin and NADP by repeated short flashes yields a polyphasic absorption change at 700 nm. Assuming first-order reactions, the signal may be resolved into three distinct components with average relaxation times of approxi­mately 20 μs, 150 μs and 20 ms. Their relative magnitude is dependent on experimental conditions; their spectral characteristics indicate that all three components may be ascribed to P-700. Concurrent measurements of Y-NADPH, the flash yield of NADP reduction with an enzymatic recycling method, allowed Y-NADPH to be compared to the magnitude of each of the three P-700 components and to total P-700. In general, the data show a good correlation of NADP reduction with the sum of the μs-phases but not with the ms-phase or total P-700. Analysis of light intensity curves (blue or far red flashes) with a mathematical model which yields maximum values for all parameters at infinite light intensity shows that in both cases approximately two moles of the microsecond component of P-700 turn over for each mole of NADPH formed. In contrast, the molar ratio of the ms-component to the yield of NADP reduction is approx. 0.2 in blue and approx. 6.3 in far red light. The data suggest that only that portion of the P-700 pool which relaxes in the microsecond range may be involved in the reduction of NADP while the ms-component is funtionally isolated from linear electron transport.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1117
Author(s):  
Catherine P. Raptopoulou

This review summarizes the structural characteristics and magnetic properties of trinuclear complexes containing the NiII-LnIII-NiII moiety and also oligonuclear complexes and coordination polymers containing the same trinuclear moiety. The ligands used are mainly polydentate Schiff base ligands and reduced Schiff base ligands and, in some cases, oximato, β-diketonato, pyridyl ketone ligands and others. The compounds reported are restricted to those containing one, two and three oxygen atoms as bridges between the metal ions; examples of carboxylato and oximato bridging are also included due to structural similarity. The magnetic properties of the complexes range from ferro- to antiferromagnetic depending on the nature of the lanthanide ion.


Cellulose ◽  
2020 ◽  
Vol 27 (16) ◽  
pp. 9593-9603
Author(s):  
Laura Berga ◽  
Isobel Bruce ◽  
Thomas W. J. Nicol ◽  
Ashley J. Holding ◽  
Noriyuki Isobe ◽  
...  

AbstractThe solubility of cellulose has been studied as a function of composition in the binary mixture of 1,1,3,3-tetramethylguanidine and propionic acid. In amine-rich compositions, greater quantities of cellulose can be dissolved than in the equimolar composition, a.k.a. the protic ionic liquid [TMGH][OPr]. By applying a methodology of a short period of heating followed by cooling, similar concentrations of cellulose can be achieved in a much shorter time period. Finally, regeneration of cellulose from solution can be achieved by altering the acid:amine molar ratio. In comparison to cellulose regenerated from these solutions using water as an antisolvent, cellulose regenerated with propionic acid exhibit a lower crystallinity as inferred from x-ray diffractometry, but a greater average molecular weight as inferred from gel permeation chromatography.


1999 ◽  
Vol 556 ◽  
Author(s):  
A. Y. Troole ◽  
S. V. Stefanovsky

AbstractZirconolite and pyrochlore are considered as promising host phases for high level waste (HLW). However, correct information on substitution mechanisms, forms of dopants incorporation in their structures and distortions in coordination polyhedra is presently unavailable. To clarify these points we use the electron paramagnetic resonance (EPR). Pyrochlore and three of zirconolite polytypes: zirconolite-2M, zirconolite-3T, and zirconolite-30 are considered. Pyrochlore is the “parent” structure for zirconolite since any zirconolite variety is produced by means of distortion of the initial pyrochlore structure. Space groups of pyrochlore and basic polymorphous zirconolite varieties found from XRD and TEM data, as well as interatomic distances and angles, were taken from reference data. This allows the determination of the most probable sites for impurities, substitution mechanisms, and local symmetry of coordination polyhedra (initial). Ions chosen for EPR were Gd (III) as an analog of trivalent rare earth and actinide elements which are also occurred in HLW and Fe (III) as a typical corrosion product which occurs in all HLW. For Gd (III) a strong ligand field approximation is suggested, theoretical computation using perturbation theory in this approximation has been carried out. All the non-diagonal members plus magnetic field were chosen as perturbation and formulae for transition frequencies, estimations of fine structure and g-factors parameters in the given approximation have been obtained.


Sign in / Sign up

Export Citation Format

Share Document