Isotopic composition and geochemical features of ores of Dzhusa pyrite-polymetallic deposit (South Urals)

Author(s):  
E. I. Yartsev ◽  
I. V. Vikentyev ◽  
N. I. Eremin

The sulfur isotopic composition was studied for the main morphological types and generation of sulfides composing the ore of the Dzhusinsky deposit, and the content of trace elements was analyzed using the highly sensitive method of mass spectrometry with inductively coupled plasma and laser sampling (LA-ICP-MS). Both types of studies were performed for ore deposits for the first time. According to the geochemistry of sulfur isotopes, its deep magmatic source was reconstructed, which made a predominant contribution to the ore-forming fluid. Using the modules of the STATISTICA, correlations were calculated and the patterns of distribution of micro impurities in sulfide minerals were revealed.

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1236
Author(s):  
Sylwia Svorová Pawełkowicz ◽  
Barbara Wagner ◽  
Jakub Kotowski ◽  
Grażyna Zofia Żukowska ◽  
Bożena Gołębiowska ◽  
...  

Impurities in paint layers executed with green and blue copper pigments, although relatively common, have been studied only little to date. Yet, their proper identification is a powerful tool for classification of paintings, and, potentially, for future provenance studies. In this paper, we present analyses of copper pigments layers from wall paintings situated in the vicinity of copper ore deposits (the palace in Kielce, the palace in Ciechanowice, and the parish church in Chotków) located within the contemporary borders of Poland. We compare the results with the analyses of copper minerals from three deposits, two local, and one historically important for the supply of copper in Europe, i.e., Miedzianka in the Holy Cross Mountains, Miedzianka in the Sudetes, and, as a reference, Špania Dolina in the Slovakian Low Tatra. Optical (OM) and electron microscopy (SEM-EDS), Raman spectroscopy, and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have been used for a detailed investigation of the minute grains. Special attention has been devoted to antimony and nickel phases, as more unusual than the commonly described iron oxides. Analyses of minerals from the deposits helped to interpret the results obtained from the paint samples. For the first time, quantitative analyses of copper pigments’ impurities have been described.


2021 ◽  
Author(s):  
Qingqing Zhao ◽  
Degao Zhai ◽  
Ryan Mathur ◽  
Jiajun Liu ◽  
David Selby ◽  
...  

Abstract Whether giant porphyry ore deposits are the products of single, short-lived magmatic-hydrothermal events or multiple events over a prolonged interval is a topic of considerable debate. Previous studies, however, have all been devoted to porphyry Cu and Cu-Mo deposits. In this paper, we report high-precision isotope dilution-negative-thermal ionization mass spectrometric (ID-N-TIMS) molybdenite Re-Os ages for the newly discovered, world-class Chalukou porphyry Mo deposit (reserves of 2.46 Mt @ 0.087 wt % Mo) in NE China. Samples were selected based on a careful evaluation of the relative timing of the different vein types (i.e., A, B, and D veins), thereby ensuring that the suite of samples analyzed could be used to reliably determine the age and duration of mineralization. The molybdenite Re-Os geochronology reveals that hydrothermal activity at Chalukou involved two magmatic-hydrothermal events spanning an interval of 6.92 ± 0.16 m.y. The first event (153.96 ± 0.08/0.63/0.79 Ma, molybdenite ID-N-TIMS Re-Os age) was associated with the emplacement of a granite porphyry dated at 152.1 ± 2.2 Ma (zircon laser ablation-inductively coupled plasma-microscopic [LA-ICP-MS] U-Pb ages), and led to only minor Mo mineralization, accounting for <10% of the overall Mo budget. The bulk of the Mo (>90%) was deposited in less than 650 kyr, between 147.67 ± 0.10/0.60/0.76 and 147.04 ± 0.12/0.72/0.86 Ma (molybdenite ID-N-TIMS Re-Os ages), coincident with the emplacement of a fine-grained porphyry at 148.1 ± 2.6 Ma (zircon LA-ICP-MS U-Pb ages). The high-precision Re-Os age determinations presented here show, contrary to the finding of a number of studies of porphyry Cu and Cu-Mo systems, that the giant Chalukou porphyry Mo deposit primarily formed in a single, short-lived (<650 kyr) hydrothermal event, suggesting that this may also have been the case for other giant porphyry Mo deposits.


2020 ◽  
Vol 35 (3) ◽  
pp. 455-460 ◽  
Author(s):  
Eduardo Bolea-Fernandez ◽  
Ana Rua-Ibarz ◽  
Milica Velimirovic ◽  
Kristof Tirez ◽  
Frank Vanhaecke

The occurrence of microplastics (MPs) in the environment is a matter of increasing concern. In this work, it has been shown for the first time that ICP-MS operated in single-event mode can be used for the characterization of MPs relying on their C content.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 236
Author(s):  
Evangelos Tzamos ◽  
Platon N. Gamaletsos ◽  
Giovanni Grieco ◽  
Micol Bussolesi ◽  
Anthimos Xenidis ◽  
...  

Antimony is a common metalloid occurring in the form of Sb-sulfides and sulfosalts, in various base and noble metal deposits. It is also present in corresponding metallurgical products (concentrates) and, although antimony has been considered a penalty element in the past, recently it has gained interest due to its classification as a critical raw material (CRM) by the European Union (EU). In the frame of the present paper, representative ore samples from the main Sb-bearing deposits of Greece (Kilkis prefecture, Chalkidiki prefecture (Kassandra Mines), and Chios Isl.) have been investigated. According to optical microscopy and electron probe microanalysis (EPMA) data, the Greek ores contain stibnite (Sb2S3), boulangerite (Pb5Sb4S11), bournonite (PbCuSbS3), bertherite (FeSbS4), and valentinite (Sb2O3). Bulk analyses by inductively coupled plasma mass spectrometry (ICP-MS) confirmed, for the first time published, the presence of a significant Hg content in the Kilkis Sb-ore. Furthermore, Kassandra Mines ores are found to contain remarkable amounts of Bi, As, Sn, Tl, and Se (excluding Ag, which is a bonus element). The above findings could contribute to potential future exploration and exploitation of Sb ores in Greece.


2014 ◽  
Vol 65 (9) ◽  
pp. 776 ◽  
Author(s):  
H. Tabouret ◽  
M. Tomadin ◽  
L. Taillebois ◽  
M. Iida ◽  
C. Lord ◽  
...  

Even if amphidromous fish species contribute most to the diversity of fish communities in the tropical insular rivers, their biological cycle remain poorly known. For the first time, the otolith elemental composition and microstructure of two ancestral gobioids, Rhyacichthys guilberti and Protogobius attiti, were investigated to describe their biological cycle and pelagic larval duration (PLD). The otolith analysis using a femtosecond laser ablation coupled to an inductively coupled plasma–mass spectrometer (fs-LA-ICP-MS) revealed an amphidromous life history for R. guilberti and it suggested a progressive habitat shift from a marine habitat to a freshwater environment for P. attiti. For the first time, an endemic species, P. attiti, showed longer and more variable PLD (55.2 ± 13.5 days) than did a widespread one (R. guilberti: ~30 days). These results need to be confirmed by analysing more samples but suggest that factors other than the PLD control endemism and dispersal processes. In association with this first description of the biological cycle for both species, such an approach is a prerequisite for the management and conservation of both patrimonial species.


2021 ◽  
pp. geochem2020-043
Author(s):  
Madison A. Schmidt ◽  
Matthew I. Leybourne ◽  
Jan M. Peter ◽  
Duane C. Petts ◽  
Simon E. Jackson ◽  
...  

There is increasing acceptance of the presence of variable magmatic contributions to the mineralizing fluids in the formation of volcanogenic massive sulfide (VMS) deposits. The world-class Windy Craggy Cu-Co-Au deposit (>300 MT @ 2.12 wt.% Cu) in northwestern British Columbia is of interest because, unlike most VMS deposits, quarts fluid inclusions from within the deposit range from relatively low to intermediate salinity (most 6-16 wt.% equivalent). In this study we used an excimer (193 nm) laser ablation system interfaced to a quadrupole inductively coupled plasma mass spectrometer to quantify key metals and metalloids that are considered by many to be indicative of magmatic contributions to hydrothermal ore deposits. Although LA-ICP-MS signals from these low-salinity inclusions are highly transient, we were able to quantify Na, Mg, K, Ca, Mn, Fe, Co, Cu, Zn, Sr, Sn, Ba, Ce, Pb and Bi consistently – of the 34 elements that were monitored. Furthermore, Cl, Sb, Cd, Mo, Rb, Br, and As were also measured in a significant number of inclusions. Comparison of the fluid inclusion chemistry with unaltered and altered mafic volcanic and sedimentary rocks and mineralized samples from the deposit indicate that enrichment in the main ore metals (Cu, Zn, Fe, Pb) in the inclusions reflects that of the altered rocks and sulfides. Metals and metalloids that may indicate a magmatic contribution typically show much greater enrichments in the fluid inclusions much greater over the host rocks at the same Cu concentration; in particular Bi, Sn and Sb are significantly elevated when compared to the host rock samples. These data are consistent with the ore-forming fluids at Windy Craggy having a strong magmatic contribution.


Author(s):  
Frédéric Moynier ◽  
Yan Hu ◽  
Wei Dai ◽  
Brandon Mahan ◽  
Julien MOUREAU

The development of collision-cell multi-collection inductively-coupled-plasma mass-spectrometers has revolutionized K isotope geochemistry, improving the sensitivity by over a factor 10 compared to older generation instruments. The application of isotope geochemistry...


Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 36 ◽  
Author(s):  
Elena Sorokina ◽  
Mikhail Rassomakhin ◽  
Sergey Nikandrov ◽  
Stefanos Karampelas ◽  
Nataliya Kononkova ◽  
...  

Blue sapphire of gem quality was recently discovered in spinel–chlorite–muscovite rock within meta-ultramafites near the Ilmenogorsky alkaline complex in the Ilmen Mountains of the South Urals. More than 20 minerals were found in the assemblage with the blue sapphire. These sapphire-bearing rocks are enriched in LREE and depleted in HREE (with the negative Eu anomalies) with REE distribution similar to those in miascites (nepheline syenite) of the Ilmenogorsky alkaline complex. 87Sr/86Sr ratios in the sapphire-bearing rocks varied from 0.7088 ± 0.000004 (2σ) to 0.7106 ± 0.000006 (2σ): epsilon notation εNd is −7.8. The Rb-Sr isochrone age of 289 ± 9 Ma was yielded for the sapphire-bearing rocks and associated muscovite. The blue sapphires are translucent to transparent and they have substantial colorless zones. They occur in a matrix of clinochlore-muscovite as concentric aggregates within spinel-gahnite coronas. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) analyses showed values with trace elements typical for “metamorphic” blue sapphires, with Ga/Mg < 2.7, Fe/Mg < 74, Cr/Ga > 1.5 (when Cr is detectable), and Fe/Ti < 9. Sapphires overlap “metasomatic” at “sapphires in alkali basalts” field on the FeO–Cr2O3–MgO–V2O3 versus FeO + TiO2 + Ga2O3 discriminant diagram. The sapphires formed together with the spinel-chlorite-muscovite rock during metasomatism at a contact of orthopyroxenites. Metasomatic fluids were enriched with Al, HSFE, and LILE and genetically linked to the miascite intrusions of Ilmenogorsky complex. The temperature required for the formation of sapphire–spinel–chlorite–muscovite rock was 700–750 °C and a pressure of 1.8–3.5 kbar.


2017 ◽  
Vol 9 (4) ◽  
pp. 724-728 ◽  
Author(s):  
Xin Wei ◽  
Hankun Hu ◽  
Baogeng Zheng ◽  
Zikri Arslan ◽  
Hung-Chung Huang ◽  
...  

In this work an assay protocol based on the ICP-MS technique was developed and validated to simultaneously determine 24 essential, non-essential, and toxic metals for the first time in C. sinensis.


Sign in / Sign up

Export Citation Format

Share Document