scholarly journals INTERMOLECULAR COMPLEX FORMATION BETWEEN METHYL ORANGE AND BOVINE SERUM ALBUMIN ON THE SURFACE OF HYDROXYAPATITE IN AN AQUEOUS PHASE

2005 ◽  
Vol 18 (0) ◽  
pp. 65-74 ◽  
Author(s):  
SABURO SHIMABAYASHI ◽  
MAKIKO FUKUOKA ◽  
TOMOAKI HINO
Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 792
Author(s):  
Febri Baskoro ◽  
Selvaraj Rajesh Kumar ◽  
Shingjiang Jessie Lue

This study investigates the permeance and rejection efficiencies of different dyes (Rhodamine B and methyl orange), folic acid and a protein (bovine serum albumin) using graphene oxide composite membrane. The ultrathin separation layer of graphene oxide (thickness of 380 nm) was successfully deposited onto porous polyvinylidene fluoride-polyacrylic acid intermediate layer on nonwoven support layer using vacuum filtration. The graphene oxide addition in the composite membrane caused an increased hydrophilicity and negative surface charge than those of the membrane without graphene oxide. In the filtration process using a graphene oxide composite membrane, the permeance values of pure water, dyes, folic acid and bovine serum albumin molecules were more severely decreased (by two orders of magnitude) than those of the nonwoven/polyvinylidene fluoride-polyacrylic acid composite membrane. However, the rejection efficiency of the graphene oxide composite was significantly improved in cationic Rhodamine B (from 9% to 80.3%) and anionic methyl orange (from 28.3% to 86.6%) feed solutions. The folic acid and bovine serum albumin were nearly completely rejected from solutions using either nonwoven/polyvinylidene fluoride-polyacrylic acid or nonwoven/polyvinylidene fluoride-polyacrylic acid/graphene oxide composite membrane, but the latter possessed anti-fouling property against the protein molecules. The separation mechanism in nonwoven/polyvinylidene fluoride-polyacrylic acid membrane includes the Donnan exclusion effect (for smaller-than-pore-size solutes) and sieving mechanism (for larger solutes). The sieving mechanism governs the filtration behavior in the nonwoven/polyvinylidene fluoride-polyacrylic acid/graphene oxide composite membrane.


2018 ◽  
Vol 74 ◽  
pp. 267-274 ◽  
Author(s):  
Monique Barreto Santos ◽  
Carlos Wanderlei Piler de Carvalho ◽  
Edwin Elard Garcia-Rojas

2010 ◽  
Vol 11 (12) ◽  
pp. 3367-3374 ◽  
Author(s):  
T. Vinayahan ◽  
P. A. Williams ◽  
G. O. Phillips

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3056 ◽  
Author(s):  
Guiying Huang ◽  
Jun Liu ◽  
Weiping Jin ◽  
Zihao Wei ◽  
Chi-Tang Ho ◽  
...  

As a functional polysaccharide, inulin was carboxymethylated and it formed nanocomplexes with bovine serum albumin (BSA). The success of obtaining carboxymethyl inulin (CMI) was confirmed by a combination of Fourier transform Infrared (FT-IR), Raman spectroscopy, gel permeation chromatography (GPC), and titration. The effects of pH and ionic strength on the formation of CMI/BSA nanocomplexes were investigated. Our results showed that the formation of complex coacervate (pHφ1) and dissolution of CMI/BSA insoluble complexes (pHφ2) appeared in pH near 4.85 and 2.00 respectively. FT-IR and Raman data confirmed the existence of electrostatic interaction and hydrogen bonding between CMI and BSA. The isothermal titration calorimetry (ITC) results suggested that the process of complex formation was spontaneous and exothermic. The complexation was dominated by enthalpy changes (∆Η < 0, ∆S < 0) at pH 4.00, while it was contributed by enthalpic and entropic changes (∆Η < 0, ∆S > 0) at pH 2.60. Irregularly shaped insoluble complexes and globular soluble nanocomplexes (about 150 nm) were observed in CMI/BSA complexes at pH 4.00 and 2.60 while using optical microscopy and atomic force microscopy, respectively. The sodium chloride suppression effect on CMI/BSA complexes was confirmed by the decrease of incipient pH for soluble complex formation (or pHc) and pHφ1 under different sodium chloride concentrations. This research presents a new functional system with the potential for delivering bioactive food ingredients.


1986 ◽  
Vol 59 (11) ◽  
pp. 3399-3403 ◽  
Author(s):  
Kiyofumi Murakami ◽  
Yukio Kubota ◽  
Yasuo Fujisaki ◽  
Takayuki Sano

Sign in / Sign up

Export Citation Format

Share Document