American Canopy: Trees, Forests, and the Making of a Nation

2014 ◽  
Vol 32 (3) ◽  
pp. 338-339
Author(s):  
L. Smith
Keyword(s):  
Biotropica ◽  
1978 ◽  
Vol 10 (2) ◽  
pp. 155 ◽  
Author(s):  
Donald R. Perry
Keyword(s):  

2017 ◽  
Vol 40 (1) ◽  
pp. 1-8
Author(s):  
Bhawna Adhikari ◽  
◽  
Bhawana Kapkoti ◽  
Neelu Lodhiyal ◽  
L.S. Lodhiyal ◽  
...  

Present study was carried out to assess the structure and regeneration of Sal forests in Shiwalik region of Kumaun Himalaya. Vegetation analysis and tree canopy density was determined by using quadrat and densitometer, respectively. Density of seedlings, saplings and trees was 490-14067, 37-1233, and 273-863 ind.ha-1 respectively. The basal area was 0.12-5.44 m2 ha-1 reported for saplings and 25.4-77.6 m2 ha-1 for trees. Regeneration of Sal was found good in Sal mixed dense forest followed by Sal open forest and Sal dense forest, respectively. Regeneration of Sal was assisted by the presence of associated tree species as well as the sufficient sunlight availability on ground due to adequate opening of canopy trees in Sal forest. Thus it is concluded that the density of tree canopy, sunlight availability and also associated tree species impacted the regeneration of Sal in the region.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4406 ◽  
Author(s):  
Rafael Sola-Guirado ◽  
Sergio Bayano-Tejero ◽  
Antonio Rodríguez-Lizana ◽  
Jesús Gil-Ribes ◽  
Antonio Miranda-Fuentes

Canopy characterization has become important when trying to optimize any kind of agricultural operation in high-growing crops, such as olive. Many sensors and techniques have reported satisfactory results in these approaches and in this work a 2D laser scanner was explored for measuring canopy trees in real-time conditions. The sensor was tested in both laboratory and field conditions to check its accuracy, its cone width, and its ability to characterize olive canopies in situ. The sensor was mounted on a mast and tested in laboratory conditions to check: (i) its accuracy at different measurement distances; (ii) its measurement cone width with different reflectivity targets; and (iii) the influence of the target’s density on its accuracy. The field tests involved both isolated and hedgerow orchards, in which the measurements were taken manually and with the sensor. The canopy volume was estimated with a methodology consisting of revolving or extruding the canopy contour. The sensor showed high accuracy in the laboratory test, except for the measurements performed at 1.0 m distance, with 60 mm error (6%). Otherwise, error remained below 20 mm (1% relative error). The cone width depended on the target reflectivity. The accuracy decreased with the target density.


2006 ◽  
Vol 26 (5) ◽  
pp. 643-656 ◽  
Author(s):  
A. Ishida ◽  
S. Diloksumpun ◽  
P. Ladpala ◽  
D. Staporn ◽  
S. Panuthai ◽  
...  

1989 ◽  
Vol 19 (3) ◽  
pp. 386-389 ◽  
Author(s):  
D. A. Norton

Soil turnover as a result of tree windthrow has an important influence on soil development and plant distribution in forests. Estimates of the time needed for soil turnover in a given area are often made, but unless these take into account the potential for reestablishment of canopy trees onto sites previously affected by windthrow, they are likely to substantially underestimate turnover time. Soil turnover is not a regular, uniform process, but rather results in a mosaic of soils with different turnover histories. Because soil turnover follows an exponential decay model, some area of soil will never be turned over. As it is therefore not possible to define the time when all the soil in an area has been turned over, it is proposed that soil turnover half-life (the time at which half the soil has been turned over) be used as a measure of soil turnover.


Author(s):  
Rebecca L. Stern ◽  
Paul Schaberg ◽  
Shelly A Rayback ◽  
Paula F. Murakami ◽  
Christopher Hansen ◽  
...  

A warming climate and extended growing season may confer competitive advantages to temperate conifers that can photosynthesize across seasons. Whether this potential translates into increased growth is unclear, as is whether pollution could constrain growth. We examined two temperate conifers - eastern white pine (Pinus strobus L.) and eastern hemlock (Tsuga canadensis (L.) Carrière) - and analyzed associations between growth (476 trees in 23 plots) and numerous factors, including climate and pollutant deposition variables. Both species exhibited increasing growth over time and eastern white pine showed greater maximum growth. Higher spring temperatures were associated with greater growth for both species, as were higher autumnal temperatures for eastern hemlock. Negative correlations were observed with previous year (eastern hemlock) and current year (eastern white pine) summer temperatures. Spring and summer moisture availability were positively correlated with growth for eastern white pine throughout its chronology, whereas for hemlock, correlations with moisture shifted from being significant with current year’s growth to previous year’s growth over time. The growth of these temperate conifers might benefit from higher spring (both species) and fall (eastern hemlock) temperatures, though this could be offset by reductions in growth associated with hotter, drier summers.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9573
Author(s):  
Tetsuto Abe ◽  
Nobuyuki Tanaka ◽  
Yoshikazu Shimizu

Invasive alien tree species can exert severe impacts, especially in insular biodiversity hotspots, but have been inadequately studied. Knowledge of the life history and population trends of an invasive alien tree species is essential for appropriate ecosystem management. The invasive tree Bischofia javanica has overwhelmed native trees on Haha-jima Island in the Ogasawara Islands, Japan. We explored forest community dynamics 2 years after a typhoon damaged the Sekimon primary forests on Haha-jima Island, and predicted the rate of population increase of B. javanica using a logistic model from forest dynamics data for 19 years. During the 2 years after the typhoon, only B. javanica increased in population size, whereas populations of native tree species decreased. Stem diameter growth of B. javanica was more rapid than that of other tree species, including native pioneer trees. Among the understory stems below canopy trees of other species, B. javanica grew most rapidly and B. javanica canopy trees decreased growth of the dominant native Ardisia sieboldii. These competitive advantages were indicated to be the main mechanism by which B. javanica replaces native trees. The logistic model predicted that B. javanica would reach 30% of the total basal area between 2017 (in the eastern plot adjacent to a former B. javanica plantation) and 2057 (in the western plot distant from the plantation site), which is a maximum percentage allowing to eradicate under the present guideline of the National Forest. The results suggest immediate removal of B. javanica is required to preserve native biodiversity in these forests.


2021 ◽  
Author(s):  
Kathryn E. Barry ◽  
Stefan A. Schnitzer

AbstractOne of the central goals of ecology is to determine the mechanisms that enable coexistence among species. Evidence is accruing that conspecific negative density dependence (CNDD), the process by which plant seedlings are unable to survive in the area surrounding adults of their same species, is a major contributor to tree species coexistence. However, for CNDD to maintain diversity, three conditions must be met. First, CNDD must maintain diversity for the majority of the woody plant community (rather than merely specific groups). Second, the pattern of repelled recruitment must increase in with plant size. Third, CNDD must occurs across life history strategies and not be restricted to a single life history strategy. These three conditions are rarely tested simultaneously. In this study, we simultaneously test all three conditions in a woody plant community in a North American temperate forest. We examined whether the different woody plant growth forms (shrubs, understory trees, mid-story trees, canopy trees, and lianas) at different ontogenetic stages (seedling, sapling, and adult) were overdispersed – a spatial pattern indicative of CNDD – using spatial point pattern analysis across life history stages and strategies. We found that there was a strong signal of overdispersal at the community level. However, this pattern was driven by adult canopy trees. By contrast, understory plants, which can constitute up to 80% of temperate forest plant diversity, were not overdispersed as adults. The lack of overdispersal suggests that CNDD is unlikely to be a major mechanism maintaining understory plant diversity. The focus on trees for the vast majority of CNDD studies may have biased the perception of the prevalence of CNDD as a dominant mechanism that maintains community-level diversity when, according to our data, CNDD may be restricted largely to trees.


2006 ◽  
Vol 49 (5) ◽  
pp. 775-783 ◽  
Author(s):  
João Paulo de Souza ◽  
Glein Monteiro Araújo ◽  
Ivan Schiavini ◽  
Polyana Custódio Duarte

The present study intended to determine the phytosociological characteristics of the tree elements on the lower strata and the canopy of a semideciduous seasonal forest. The trees (> 15 cm circumference at breast height) were sampled in 40 plots of 10m x 20m. The individuals in the lower strata (> 1m up to 15 cm of circumference in the base of the stem) were sampled in plots of 10m x 10m. Licania apetala and Micrandra elata obtained the first and second places in the two strata. Among the species with the highest value of importance on the canopy, Alchornea glandulosa, Pimenta pseudocaryophyllus, Copaifera langsdorffii, Heisteria ovata and Didymopanax morototoni presented a ratio of less than one individual in the lower strata when compared to the canopy. However, there was a high floristic similarity between the lower strata and the canopy.


Sign in / Sign up

Export Citation Format

Share Document