Agricultural Productivity and Fertility Rates: Evidence from the Oil Palm Boom in Indonesia

2021 ◽  
pp. 0520-10905R1
Author(s):  
Esther Gehrke ◽  
Christoph Kubitza
2020 ◽  
Vol 22 (3) ◽  
pp. 331-341
Author(s):  
Joko Mulyono

Agricultural productivity in the border region of Bengkayang Regency is low, on one side the area of agricultural land is quite extensive (89.23%) coupled with a population density of only 44 people/km2. The research objective was to determine the leading agricultural commodities in the border region of Bengkayang Regency, West Kalimantan Province to support the development of a national food barn. This study uses secondary data covering data on crops harvest area, horticulture crop production, plantation production, and livestock populations in 2011-2015 obtained from the Bengkayang Regency Central Statistics Agency (BPS), West Kalimantan. The data is analyzed by analysis of Location Quotient (LQ) and Shift Share Analysis (SSA). The results of the study showed that oil palm was the plantation’s leading commodities in the border region of Jagoi Babang Subdistrict and pepper in Siding SubDistrict. Cows, pigs, and ducks are the leading commodities of livestock in the border region of Jagoi Babang Subdistrict and ducks in Siding Subdistrict.


2021 ◽  
Author(s):  
Esther Gehrke ◽  
Christoph Kubitza

We analyze the link between agricultural productivity growth and fertility, using the oil palm boom in Indonesia as empirical setting. During the time period 1996 to 2016, we find consistently negative effects of the oil palm expansion on fertility. We explain this finding with rising farm profits, that led to consumption growth, the expansion of the non-agricultural sector, increasing returns to education and to higher school nrollment. Together these findings suggest that agricultural productivity growth can play an important role in accelerating the fertility transition, as long as the economic benefits are large enough to translate into local economic development.


2015 ◽  
Vol 2 (2) ◽  
pp. 148-158
Author(s):  
Surianto

Spodosol soil of Typic Placorthod sub-group of East Barito District is one of the problem soils with the presence of hardpan layer, low fertility, low water holding capacity, acid reaction and it is not suitable for oil palm cultivation without any properly specific management of land preparation and implemented best agronomic practices. A study was carried out to evaluate the soil characteristic of a big hole (A profile) and no big hole (B profile) system and comparative oil palm productivity among two planting systems. This study was conducted in Spodosol soil at oil palm plantation (coordinate X = 0281843 and Y = 9764116), East Barito District, Central Kalimantan Province on February 2014, by surveying of placic and ortstein depth and observing soil texture and chemical properties of 2 (two) oil palm's soil profiles that have been planted in five years. Big hole system of commercial oil palm field planting on the Spodosol soil area was designed for the specific purpose of minimizing the potential of a negative effect of shallow effective planting depth for oil palms growing due to the hardpan layer (placic and ortstein) presence as deep as 0.25 - 0.50 m. The big hole system is a planting hole type which was vertical-sided with 2.00 m x 1.50 m on top and bottom side and 3.00 m depth meanwhile the 2:1 drain was vertical-sided also with 1.50 m depth and 300 m length. Oil palm production was recorded from the year 2012 up to 2014. Results indicated that the fractions both big hole profile (A profile) and no big hole profile (B profile) were dominated by sands ranged from 60% to 92% and the highest sands content of non-big hole soil profile were found in A and E horizons (92%). Better distribution of sand and clay fractions content in between layers of big hole soil profiles of A profile sample is more uniform compared to the B profile sample. The mechanical holing and material mixing of soil materials of A soil profile among the upper and lower horizons i.e. A, E, B and C horizons before planting that resulted a better distribution of both soil texture (sands and clay) and chemical properties such as acidity value (pH), C-organic, N, C/N ratio, CEC, P-available and Exchangeable Bases. Investigation showed that exchangeable cations (Ca, Mg, K), were very low in soil layers (A profile) and horizons (B profile) investigated. The low exchangeable cations due to highly leached of bases to the lower layers and horizons. Besides, the palm which was planted on the big hole system showed good adaptation and response positively by growing well of tertiary and quaternary roots that the roots were penetrable into deeper rooting zone as much as >1.00 m depth. The roots can grow well and penetrate much deeper in A profile compared to the undisturbed hardpan layer (B profile). The FFB (fresh fruit bunches) production of the non-big hole block was higher than the big hole block for the first three years of production. This might be due to the high variation of monthly rainfall in-between years of observation from 2009 to 2014. Therefore, the hardness of placic and ortstein as unpenetrable agents by roots and water to prevent water loss and retain the water in the rhizosphere especially in the drier weather. In the high rainfall condition, the 2:1 drain to prevent water saturation in the oil palm rhizosphere by moving some water into the drain. Meanwhile, the disturbed soil horizon (big hole area) was drier than un disturbance immediately due to water removal to deeper layers. We concluded that both big hole and 2:1 drain are a suitable technology for Spodosol soil land especially in preparing palms planting to minimize the negative effect of the hardpan layer for oil palm growth.


2013 ◽  
Author(s):  
Artchapong Hassametto ◽  
Preerawadee Chaiboontun ◽  
Chattraporn Prajuabwan ◽  
Laphatrada Khammuang ◽  
Aussadavut Dumrongsiri

SIMBIOSA ◽  
2014 ◽  
Vol 3 (1) ◽  
Author(s):  
Fauziah Syamsi

Kelapa sawit merupakan salah satu tanaman meningkat paling pesat di dunia, dan mencakup lebih dari 13 juta ha di Asia Tenggara. Sumatera memiliki sejarah yang relatif panjang budidaya kelapa sawit komersial, dan banyak perkebunan telah menggantikan hutan hujan. Biasanya ini perkebunan monokultur mendukung spesies lebih sedikit daripada hutan, namun ada sangat sedikit informasi yang tersedia untuk kelelawar. Kami mencicipi kelelawar pemakan serangga di Sumatera Barat dalam perkebunan kelapa sawit matang di mana beberapa tutupan hutan dipertahankan di fragmen hutan di bukit-bukit dan di sepanjang sungai. Menggunakan total 180 kecapi perangkap malam kami dibandingkan dengan komunitas kelelawar dalam tiga jenis habitat: patch hutan, zona riparian dan perkebunan. Total kami ditangkap 1108 kelelawar yang mewakili 21 spesies dan 5 keluarga, dan mayoritas ini (dalam hal spesies dan kelimpahan) ditemukan di fragmen hutan. perkebunan kelapa sawit ditemukan menjadi habitat miskin untuk kelelawar - hanya empat orang dari dua spesies ditangkap. daerah pinggiran sungai didukung keanekaragaman menengah, dan mungkin penting sebagai koridor satwa liar antara fragmen hutan. Kata kunci : Biodiversitas, keleawar Microchiropteran


2016 ◽  
Vol 44 (3) ◽  
pp. 475-485
Author(s):  
G. Ravichandran ◽  
P. Murugesan ◽  
P. Naveen Kumar ◽  
R.K. Mathur ◽  
D. Ramajayam

2011 ◽  
Vol 3 (8) ◽  
pp. 23-27
Author(s):  
G. Swarna latha G. Swarna latha ◽  
◽  
Dr. Amara Srinivasulu ◽  
G. Suneetha G. Suneetha
Keyword(s):  
Oil Palm ◽  

Sign in / Sign up

Export Citation Format

Share Document