scholarly journals LINEAR AND NONLINEAR FREE VIBRATION ANALYSIS OF RECTANGULAR PLATE

2021 ◽  
Vol 12 (1) ◽  
pp. 15-25
Author(s):  
Edward Adah ◽  
David Onwuka ◽  
Owus Ibearugbulem ◽  
Chinenye Okere

The major assumption of the analysis of plates with large deflection is that the middle surface displacements are not zeros. The determination of the middle surface displacements, u0 and v0 along x- and y- axes respectively is the major challenge encountered in large deflection analysis of plate. Getting a closed-form solution to the long standing von Karman large deflection equations derived in 1910 have proven difficult over the years. The present work is aimed at deriving a new general linear and nonlinear free vibration equation for the analysis of thin rectangular plates. An elastic analysis approach is used. The new nonlinear strain displacement equations were substituted into the total potential energy functional equation of free vibration. This equation is minimized to obtain a new general equation for analyzing linear and nonlinear resonating frequencies of rectangular plates. This approach eliminates the use of Airy’s stress functions and the difficulties of solving von Karman's large deflection equations. A case study of a plate simply supported all-round (SSSS) is used to demonstrate the applicability of this equation. Both trigonometric and polynomial displacement shape functions were used to obtained specific equations for the SSSS plate. The numerical results for the coefficient of linear and nonlinear resonating frequencies obtained for these boundary conditions were 19.739 and 19.748 for trigonometric and polynomial displacement functions respectively. These values indicated a maximum percentage difference of 0.051% with those in the literature. It is observed that the resonating frequency increases as the ratio of out–of–plane displacement to the thickness of plate (w/t) increases. The conclusion is that this new approach is simple and the derived equation is adequate for predicting the linear and nonlinear resonating frequencies of a thin rectangular plate for various boundary conditions.

Author(s):  
Zhaochun Teng ◽  
Pengfei Xi

The properties of functionally gradient materials (FGM) are closely related to porosity, which has effect on FGM's elastic modulus, Poisson's ratio, density, etc. Based on the classical theory of thin plates and Hamilton principle, the mathematical model of free vibration and buckling of FGM porous rectangular plates with compression on four sides is established. Then the dimensionless form of the governing differential equation is also obtained. The dimensionless governing differential equation and its boundary conditions are transformed by differential transformation method (DTM). After iterative convergence, the dimensionless natural frequencies and critical buckling loads of the FGM porous rectangular plate are obtained. The problem is reduced to the free vibration of FGM rectangular plate with zero porosity and compared with its exact solution. It is found that DTM gives high accuracy result. The validity of the method is verified in solving the free vibration and buckling problems of the porous FGM rectangular plates with compression on four sides. The results show that the elastic modulus of FGM porous rectangular plate decreases with the increase of gradient index and porosity. Furthermore, the effects of gradient index and porosity on dimensionless natural frequencies and critical buckling loads are further analyzed under different boundary conditions with constant aspect ratio, and the effects of aspect ratio and load on dimensionless natural frequencies under different boundary conditions.


Author(s):  
Nastaran Shahmansouri ◽  
Mohammad Mohammadi Aghdam ◽  
Kasra Bigdeli

The present study investigates static analyses of moderately thick FG plates. Using the First Order Shear Deformation Theory (FSDT), functionally graded plates subjected to transversely distributed loading with various boundary conditions are studied. Effective mechanical properties which vary from one surface of the plate to the other assumed to be defined by a power law form of distribution. Different ceramic-metal sets of materials are studied. Solution of the governing equations, including five equilibrium and eight constitutive equations, is obtained by the Extended Kantorovich Method (EKM). The system of thirteen Partial Differential Equations (PDEs) in terms of displacements, rotations, force and moment resultants are considered as multiplications of separable function of independent variables x and y. Then by successful utilization of the EKM these equations are converted to a double set of ODE systems in terms of x and y. The obtained ODE systems are then solved iteratively until final convergence is achieved. Closed form solution is presented for these ODE sets. It is shown that the method is very stable and provides fast convergence and highly accurate predictions for both thin and moderately thick plates. Comparison of the normal stresses at various points of rectangular plates and deflection of mid-point of the plate are presented and compared with available data in the literature. The effects of the volume fraction exponent n on the behavior of the normalized deflection, moment resultants and stresses of FG plates are also studied. To validate data for analysis fully clamped FG plates, another analysis was carried out using finite element code ANSYS. Close agreement is observed between predictions of the EKM and ANSYS.


1967 ◽  
Vol 34 (2) ◽  
pp. 271-277 ◽  
Author(s):  
J. B. Kennedy ◽  
Simon Ng

The perturbation method is used to analyze small and large-deflection problems of clamped skewed plates under uniform pressure. The results are improved by successive approximations to the three displacement components of a point on the middle plane of the plate. Numerical and graphical results are presented. Comparisons are made with existing results for skewed plates with small deflections as well as with results for rectangular plates with small and large-deflection behavior; good agreement is shown. The effects of skew and aspect ratio on plates with large deflections are investigated. The ratios of maximum center deflection to thickness of plate at which linear and nonlinear theories start deviating significantly from each other are obtained for different aspect ratios and skew angles. It is shown that the center deflection decreases with increase in skew and aspect ratio, and that the maximum resultant stress occurs along the longer edges of the plates and is displaced toward the obtuse corners.


2012 ◽  
Vol 79 (6) ◽  
Author(s):  
S. A. Eftekhari ◽  
A. A. Jafari

One of the major limitations of the conventional Ritz method is its difficulty in implementation to the differential equations with natural boundary conditions at the boundary points/lines. Plates involving free edges/corners and irregularly shaped plates are two historical and classical examples which show that their solutions cannot be accurately approximated by the conventional Ritz method. To solve this difficulty, a simple, novel, and accurate Ritz formulation is introduced in this paper. It is revealed that the proposed methodology can produce much better accuracy than the conventional Ritz method for rectangular plates involving free edges/corners and skew plates.


Author(s):  
J-S Wu ◽  
H-M Chou ◽  
D-W Chen

The dynamic characteristic of a uniform rectangular plate with four boundary conditions and carrying three kinds of multiple concentrated element (rigidly attached point masses, linear springs and elastically mounted point masses) was investigated. Firstly, the closed-form solutions for the natural frequencies and the corresponding normal mode shapes of a rectangular ‘bare’ (or ‘unconstrained’) plate (without any attachments) with the specified boundary conditions were determined analytically. Next, by using these natural frequencies and normal mode shapes incorporated with the expansion theory, the equation of motion of the ‘constrained’ plate (carrying the three kinds of multiple concentrated element) were derived. Finally, numerical methods were used to solve this equation of motion to give the natural frequencies and mode shapes of the ‘constrained’ plate. To confirm the reliability of previous free vibration analysis results, a finite element analysis was also conducted. It was found that the results obtained from the above-mentioned two approaches were in good agreement. Compared with the conventional finite element method (FEM), the approach employed in this paper has the advantages of saving computing time and achieving better accuracy, as can be seen from the existing literature.


Sign in / Sign up

Export Citation Format

Share Document