scholarly journals INFLUENCE OF SALT DIFFUSION ON THE STABILITY OF METHANE GAS HYDRATE IN THE ARCTIC SHELF

2020 ◽  
Vol 4 (1) ◽  
pp. 91-97
Author(s):  
Valentina V. Malakhova

Suitable conditions for the formation of methane hydrates exist in the bottom sediments of shallow Arctic shelves in the presence of permafrost. Salt diffusion into hydrated bottom sediments can help accelerate hydrate degradation. An analysis of the influence of salinity of the bottom sediments of the Arctic shelf on the thickness of the methane hydrate stability zone was based on mathematical modeling. Estimates of the thickness of the stability zone were obtained in experiments with various correlations which relate the hydrate dissociation temperature in the presence of aqueous solutions containing salts.

Geosciences ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 188 ◽  
Author(s):  
Evgeny Chuvilin ◽  
Valentina Ekimova ◽  
Boris Bukhanov ◽  
Sergey Grebenkin ◽  
Natalia Shakhova ◽  
...  

Destabilization of intrapermafrost gas hydrate is one possible reason for methane emission on the Arctic shelf. The formation of these intrapermafrost gas hydrates could occur almost simultaneously with the permafrost sediments due to the occurrence of a hydrate stability zone after sea regression and the subsequent deep cooling and freezing of sediments. The top of the gas hydrate stability zone could exist not only at depths of 200–250 m, but also higher due to local pressure increase in gas-saturated horizons during freezing. Formed at a shallow depth, intrapermafrost gas hydrates could later be preserved and transform into a metastable (relict) state. Under the conditions of submarine permafrost degradation, exactly relict hydrates located above the modern gas hydrate stability zone will, first of all, be involved in the decomposition process caused by negative temperature rising, permafrost thawing, and sediment salinity increasing. That’s why special experiments were conducted on the interaction of frozen sandy sediments containing relict methane hydrates with salt solutions of different concentrations at negative temperatures to assess the conditions of intrapermafrost gas hydrates dissociation. Experiments showed that the migration of salts into frozen hydrate-containing sediments activates the decomposition of pore gas hydrates and increase the methane emission. These results allowed for an understanding of the mechanism of massive methane release from bottom sediments of the East Siberian Arctic shelf.


Geology ◽  
2021 ◽  
Author(s):  
Richard J. Davies ◽  
Miguel Ángel Morales Maqueda ◽  
Ang Li ◽  
Mark Ireland

Establishing how past climate change affected the stability of marine methane hydrate is important for our understanding of the impact of a future warmer world. As oceans shallow toward continental margins, the base of the hydrate stability zone also shallows, and this delineates the feather edge of marine methane hydrate. It is in these rarely documented settings that the base of the hydrate stability zone intersects the seabed and hydrate can crop out where it is close to being unstable and most susceptible to dissociation due to ocean warming. We show evidence for a seismically defined outcrop zone intersecting canyons on a canyon-incised margin offshore of Mauritania. We propose that climatic, and hence ocean, warming since the Last Glacial Maximum as well as lateral canyon migration, cutting, and filling caused multiple shifts of the hydrate stability field, and therefore hydrate instability and likely methane release into the ocean. This is particularly significant because the outcrop zone is longer on canyon-incised margins than on less bathymetrically complex submarine slopes. We propose considerably more hydrate will dissociate in these settings during future ocean warming, releasing methane into the world’s oceans.


Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 407 ◽  
Author(s):  
Chuvilin ◽  
Davletshina ◽  
Ekimova ◽  
Bukhanov ◽  
Shakhova ◽  
...  

Destabilization of intrapermafrost gas hydrates is one of the possible mechanisms responsible for methane emission in the Arctic shelf. Intrapermafrost gas hydrates may be coeval to permafrost: they originated during regression and subsequent cooling and freezing of sediments, which created favorable conditions for hydrate stability. Local pressure increase in freezing gas-saturated sediments maintained gas hydrate stability from depths of 200–250 meters or shallower. The gas hydrates that formed within shallow permafrost have survived till present in the metastable (relict) state. The metastable gas hydrates located above the present stability zone may dissociate in the case of permafrost degradation as it becomes warmer and more saline. The effect of temperature increase on frozen sand and silt containing metastable pore methane hydrate is studied experimentally to reconstruct the conditions for intrapermafrost gas hydrate dissociation. The experiments show that the dissociation process in hydrate-bearing frozen sediments exposed to warming begins and ends before the onset of pore ice melting. The critical temperature sufficient for gas hydrate dissociation varies from −3.0 to −0.3 °C and depends on lithology (particle size) and salinity of the host frozen sediments. Taking into account an almost gradientless temperature distribution during degradation of subsea permafrost, even minor temperature increases can be expected to trigger large-scale dissociation of intrapermafrost hydrates. The ensuing active methane emission from the Arctic shelf sediments poses risks of geohazard and negative environmental impacts.


2015 ◽  
Vol 465 (2) ◽  
pp. 1283-1288 ◽  
Author(s):  
A. V. Eliseev ◽  
V. V. Malakhova ◽  
M. M. Arzhanov ◽  
E. N. Golubeva ◽  
S. N. Denisov ◽  
...  

2021 ◽  
Author(s):  
Hariharan Ramachandran ◽  
Andreia Plaza-Faverola ◽  
Hugh Daigle ◽  
Stefan Buenz

<p>Evidences of subsurface fluid flow-driven fractures (from seismic interpretation) are quite common at Vestnesa Ridge (around 79ºN in the Arctic Ocean), W-Svalbard margin. Ultimately, the fractured systems have led to the formation of pockmarks on the seafloor. At present day, the eastern segment of the ridge has active pockmarks with continuous methane seep observations in sonar data. The pockmarks in the western segment are considered inactive or to seep at a rate that is harder to identify. The ridge is at ~1200m water depth with the base of the gas hydrate stability zone (GHSZ) at ~200m below the seafloor. Considerable free gas zone is present below the hydrates. Besides the obvious concern of amount and rates of historic methane seeping into the ocean biosphere and its associated effects, significant gaps exist in the ability to model the processes of flow of methane through this faulted and fractured region. Our aim is to highlight the interactions between physical flow, geomechanics and geological control processes that govern the rates and timing of methane seepage.</p><p>For this purpose, we performed numerical fluid flow simulations. We integrate fundamental mass and component conservation equations with a phase equilibrium approach accounting for hydrate phase boundary effects to simulate the transport of gas from the base of the GHSZ through rock matrix and interconnected fractures until the seafloor. The relation between effective stress and fluid pressure is considered and fractures are activated once the effective stress exceeds the tensile limit. We use field data (seismic, oedometer tests on calypso cores, pore fluid pressure and temperature) to constrain the range of validity of various flow and geomechanical parameters in the simulation (such as vertical stress, porosity, permeability, saturations).</p><p>Preliminary results indicate fluid overpressure greater than 1.5 MPa is required to initiate fractures at the base of the gas hydrate stability zone for the investigated system. Focused fluid flow occurs through the narrow fracture networks and the gas reaches the seafloor within 1 day. The surrounding regions near the fracture network exhibit slower seepage towards the seafloor, but over a wider area. Advective flux through the less fractured surrounding regions, reaches the seafloor within 15 years and a diffusive flux reaches within 1200 years. These times are controlled by the permeability of the sediments and are retarded further due to considerable hydrate/carbonate formation during vertical migration. Next course of action includes constraining the methane availability at the base of the GHSZ and estimating its impact on seepage behavior.</p>


Geosciences ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 193 ◽  
Author(s):  
Marcelo Ketzer ◽  
Daniel Praeg ◽  
Maria A.G. Pivel ◽  
Adolpho H. Augustin ◽  
Luiz F. Rodrigues ◽  
...  

Gas hydrate provinces occur in two sedimentary basins along Brazil’s continental margin: (1) The Rio Grande Cone in the southeast, and (2) the Amazon deep-sea fan in the equatorial region. The occurrence of gas hydrates in these depocenters was first detected geophysically and has recently been proven by seafloor sampling of gas vents, detected as water column acoustic anomalies rising from seafloor depressions (pockmarks) and/or mounds, many associated with seafloor faults formed by the gravitational collapse of both depocenters. The gas vents include typical features of cold seep systems, including shallow sulphate reduction depths (<4 m), authigenic carbonate pavements, and chemosynthetic ecosystems. In both areas, gas sampled in hydrate and in sediments is dominantly formed by biogenic methane. Calculation of the methane hydrate stability zone for water temperatures in the two areas shows that gas vents occur along its feather edge (water depths between 510 and 760 m in the Rio Grande Cone and between 500 and 670 m in the Amazon deep-sea fan), but also in deeper waters within the stability zone. Gas venting along the feather edge of the stability zone could reflect gas hydrate dissociation and release to the oceans, as inferred on other continental margins, or upward fluid flow through the stability zone facilitated by tectonic structures recording the gravitational collapse of both depocenters. The potential quantity of venting gas on the Brazilian margin under different scenarios of natural or anthropogenic change requires further investigation. The studied areas provide natural laboratories where these critical processes can be analyzed and quantified.


SPE Journal ◽  
2008 ◽  
Vol 13 (02) ◽  
pp. 146-152 ◽  
Author(s):  
Arne Graue ◽  
B. Kvamme ◽  
Bernie Baldwin ◽  
Jim Stevens ◽  
James J. Howard ◽  
...  

Summary Magnetic resonance imaging (MRI) of core samples in laboratory experiments showed that CO2 storage in gas hydrates formed in porous rock resulted in the spontaneous production of methane with no associated water production. The exposure of methane hydrate in the pores to liquid CO2 resulted in methane production from the hydrate that suggested the exchange of methane molecules with CO2 molecules within the hydrate without the addition or subtraction of significant amounts of heat. Thermodynamic simulations based on Phase Field Theory were in agreement with these results and predicted similar methane production rates that were observed in several experiments. MRI-based 3D visualizations of the formation of hydrates in the porous rock and the methane production improved the interpretation of the experiments. The sequestration of an important greenhouse gas while simultaneously producing the freed natural gas offers access to the significant amounts of energy bound in natural gas hydrates and also offers an attractive potential for CO2 storage. The potential danger associated with catastrophic dissociation of hydrate structures in nature and the corresponding collapse of geological formations is reduced because of the increased thermodynamic stability of the CO2 hydrate relative to the natural gas hydrate. Introduction The replacement of methane in natural gas hydrates with CO2 presents an attractive scenario of providing a source of abundant natural gas while establishing a thermodynamically more stable hydrate accumulation. Natural gas hydrates represent an enormous potential energy source as the total energy corresponding to natural gas entrapped in hydrate reservoirs is estimated to be more than twice the energy of all known energy sources of coal, oil, and gas (Sloan 2003). Thermodynamic stability of the hydrate is sensitive to local temperature and pressure, but all components in the hydrate have to be in equilibrium with the surroundings if the hydrate is to be thermodynamically stable. Natural gas hydrate accumulations are therefore rarely in a state of complete stability in a strict thermodynamic sense. Typically, the hydrate associated with fine-grain sediments is trapped between low-permeability layers that keep the system in a state of very slow dynamics. One concern of hydrate dissociation, especially near the surface of either submarine or permafrost-associated deposits, is the potential for the release of methane to the water column or atmosphere. Methane represents an environmental concern because it is a more aggressive (~25 times) greenhouse gas than CO2. A more serious concern is related to the stability of these hydrate formations and its impact on the surrounding sediments. Changes in local conditions of temperature, pressure, or surrounding fluids can change the dynamics of the system and lead to catastrophic dissociation of the hydrates and consequent sediment instability. The Storegga mudslide in offshore Norway was created by several catastrophic hydrate dissociations. The largest of these was estimated to have occurred 7,000 years ago and was believed to have created a massive tsunami (Dawson et al. 1988). The replacement of natural gas hydrate with CO2 hydrate has the potential to increase the stability of hydrate-saturated sediments under near-surface conditions. Hydrocarbon exploitation in hydrate-bearing regions has the additional challenge to drilling operations of controlling heat production from drilling and its potential risk of local hydrate dissociation (Yakushev and Collett 1992). The molar volume of hydrate is 25-30% greater than the volume of liquid water under the same temperature-pressure conditions. Any production scenario for natural gas hydrate that involves significant dissociation of the hydrate (e.g., pressure depletion) has to account for the release of significant amounts of water that in turn affects the local mechanical stress on the reservoir formation. In the worst case, this would lead to local collapse of the surrounding formation. Natural gas production by CO2 exchange and sequestration benefits from the observation that there is little or no associated liquid water production during this process. Production of gas by hydrate dissociation can produce large volumes of associated water, and can create a significant environmental problem that would severely limit the economic potential. The conversion from methane hydrate to a CO2 hydrate is thermodynamically favorable in terms of free energy differences, and the phase transition is coupled to corresponding processes of mass and heat transport. The essential question is then if it is possible to actually convert methane hydrate as found in sediments to CO2 hydrate. Experiments that formed natural gas hydrates in porous sandstone core plugs used MRI to monitor the dynamics of hydrate formation and reformation. The paper emphasizes the experimental procedures developed to form the initial natural gas hydrates in sandstone pores and the subsequent exchange with CO2 while monitoring the dynamic process with 3D imaging on a sub millimetre scale. The in-situ imaging illustrates the production of methane from methane hydrate when exposed to liquid CO2 without any external heating.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 210
Author(s):  
Ioannis Nikolaos Tsimpanogiannis ◽  
Emmanuel Stamatakis ◽  
Athanasios Konstantinos Stubos

We examine the critical pore radius that results in critical gas saturation during pure methane hydrate dissociation within geologic porous media. Critical gas saturation is defined as the fraction of gas volume inside a pore system when the methane gas phase spans the system. Analytical solutions for the critical pore radii are obtained for two, simple pore systems consisting of either a single pore-body or a single pore-body connected with a number of pore-throats. Further, we obtain critical values for pore sizes above which the production of methane gas is possible. Results shown in the current study correspond to the case when the depression of the dissociation temperature (due to the presence of small-sized pores; namely, with a pore radius of less than 100 nm) is considered. The temperature shift due to confinement in porous media is estimated through the well-known Gibbs-Thompson equation. The particular results are of interest to geological media and particularly in the methane production from the dissociation of natural hydrate deposits within off-shore oceanic or on-shore permafrost locations. It is found that the contribution of the depression of the dissociation temperature on the calculated values of the critical pore sizes for gas production is limited to less than 10% when compared to our earlier study where the porous media effects have been ignored.


Sign in / Sign up

Export Citation Format

Share Document