scholarly journals Investigation of water quality in Ambur city by water quality indexing

2020 ◽  
Vol 10 (2) ◽  
pp. 48-52
Author(s):  
K. Mohiuddin Farooqui ◽  
Santosh Kumar Sar ◽  
Vijita Diwan

Present study is carried out for the assessment of ground water quality and comparing its suitability for drinking purpose in Ambur city in Tirupattur District, Tamil Nadu, India. Water quality index is calculated on the basis of pH, conductivity, total dissolved solids, total hardness, Ca2+, Mg2+, Na+, K+, Cl-, alkalinity, and SO42- content of the water samples. Water quality index study show that the ground water quality of the study area is deteriorated due to high value of total dissolved solids, conductivity, total hardness, calcium, magnesium, chloride, and sulphate in water samples.

2009 ◽  
Vol 6 (2) ◽  
pp. 523-530 ◽  
Author(s):  
C. R. Ramakrishnaiah ◽  
C. Sadashivaiah ◽  
G. Ranganna

The present work is aimed at assessing the water quality index (WQI) for the groundwater of Tumkur taluk. This has been determined by collecting groundwater samples and subjecting the samples to a comprehensive physicochemical analysis. For calculating the WQI, the following 12 parameters have been considered: pH, total hardness, calcium, magnesium, bicarbonate, chloride, nitrate, sulphate, total dissolved solids, iron, manganese and fluorides. The WQI for these samples ranges from 89.21 to 660.56. The high value of WQI has been found to be mainly from the higher values of iron, nitrate, total dissolved solids, hardness, fluorides, bicarbonate and manganese in the groundwater. The results of analyses have been used to suggest models for predicting water quality. The analysis reveals that the groundwater of the area needs some degree of treatment before consumption, and it also needs to be protected from the perils of contamination


2021 ◽  
Vol 13 (3) ◽  
pp. 954-961
Author(s):  
R. Chitradevi ◽  
P. N. Magudeswaran ◽  
Vikas D. Ghadamode ◽  
K. Poonkodi ◽  
V. Anitha

In this work, the assessment of surface and ground water quality of Palladam Taluk, Tiruppur, district, Tamil Nadu, India were carried out using Geographical Information System (GIS) and Modified National Sanitation Foundation -Water Quality Index (MNSF-WQI). Four samples from surface and twenty seven samples from ground water sources were taken from Palladam Taluk, Tiruppur District. In the current study, the surface and ground water samples were analysed for temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), biological oxygen demand (BOD), turbidity, total dissolved solids (TDS), total hardness (TH), faecal coliforms (FC), total phosphate (TP), total nitrate (TN), chlorides (Cl-), sodium (Na+) and fluoride (F-) ions to investigate the suitability of surface and ground water for drinking and agricultural purposes through Geographic information system (GIS) and modified national sanitation foundation water quality index (MNSF-WQI) technique. The concentrations of TH, TDS, Cl- and Na+ were observed to be above the desirable limit of World Health Organization (WHO) guidelines and Bureau of Indian Standards (BIS). whereas F-, BOD, DO, EC, TP, TN, FC and temperature were within the acceptable limits. The GIS-based WQI map analysis indicated that 45% of the study area having good water quality index and the remaining area showed medium quality water. Dyeing and textile industries in the study area are responsible for deteriorating the quality to medium quality of water which was not appropriate for direct utilization and needed prior treatment. There is no detailed report on assessment of the surface and ground water quality of Palladam Taluk in Tamil Nadu using GIS and MNSF-WQI techniques.


2021 ◽  
Vol 108 (june) ◽  
pp. 1-6
Author(s):  
Sellamuthu KM ◽  
◽  
Malathi P ◽  
Kumaraperumal R ◽  
◽  
...  

Ground water quality of Horticultural College and Research Institute (HC & RI), Periyakulam located in Theni District, Tamil Nadu was assessed during January 2021. Ground water samples were collected from bore wells and their quality parameters were assessed. pH values ranged from 6.88 to 7.81; electrical conductivity values ranged from 0.20 to 1.28 dSm-1 and most of the samples were under high salinity class (C3) (84.6%). Calcium, magnesium, sodium and potassium content ranged from 1.68 to 4.72 m.e L-1, 0.72 to 10.6 m.e L-1, 1.35 to 10.3 m.e L-1 and 0.05 to 0.23 m.e L-1 respectively. Most of the samples were found to be magnesium dominating and magnesium exceeds the calcium content in most of the water samples. Magnesium toxicity will be exhibited in the continuous use of water to crops. No carbonates were noticed. Bicarbonates, chloride and sulphate concentration varied from 2.0 to 13.4 m.e L-1 , 1.12 to 7.52 m.e L-1 and 0.02 to 0.99 m.e L-1 respectively. The sequence of cations were found in the order of Mg2+ >Na+> Ca2+ >K+ and anions followed the sequence of HCO3- >Cl- > SO42-. Total hardness in the study area varied from 120 to 686 mg L-1 and majority of the samples (61.5 %) were very hard. RSC values varied from -3.76 to 5.24 meL-1 and most of the samples come under the moderate category (61.5%) followed by safe (38.5%). RSBC varied from 0.32 to 9.48 m.e L-1 and majority of the samples come under the safe category (61.5%) followed by unsafe (23.1%) and moderate (15.4%). SAR values ranged from 0.83 to 5.11 and all the samples were found to be low sodium category (S1). There is no sodicity problem existing in the ground waters. In the present study, the permeability index ranged from 39.4 to 80.3 per cent and the majority of the samples come under the permeability hazard class II, which can be used for irrigation without any permeability problem in the soils. As per CSSRI, Karnal classification, majority of the ground water samples coming under good (76.9), followed by marginally alkaline (15.4%) and alkaline (7.7%). Marginally alkaline and alkaline waters should be managed carefully to avoid a negative impacts on soil and crops.


2017 ◽  
Vol 1 (2) ◽  
pp. 1-11
Author(s):  
Ali Nasser Hilo

The low level of water in rivers in Iraq leads to poor water quality, on that basis; we need to assess Iraq's water resources for uses of irrigation and drinking water. This study present a model accounts for ground water quality by using a water quality index (WQI) for the region defined between the city of Kut and the city of Badra in Wasit province. this study relies on a system of wells set up along the path through the Badra –Kut  and around it  up to 78 wells. The study showed poor quality of ground water in the region of study and it is unsuitability for irrigation and drinking water, as well as provided a solution to the water accumulated in the Shuwayja to reduce the bad effect on groundwater by using a system of branch and collection canals  then pumping at the effluent  of Al  Shuwayja in seasons of rainy season ..Water quality index calculated depend on the basis of various physic-chemical parameters as PH, Ec , TDS, TSS, Nacl , SO4 ,Na , and  Mg. The resultant and analytical are present with use of Arch GIS program – geostastical analysis for the water index and water quality parameters


2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Durai Ganesh ◽  
G. Senthilkumar ◽  
P. Eswaran ◽  
M. Balakrishnan ◽  
S. N. Bramha ◽  
...  

AbstractUranium concentration in the ground water samples from the district of Tiruvannamalai, Tamil Nadu, was measured using an LED fluorimeter. All the samples were qualified as potable water from the radiological perspective. Though some samples showed mild chemical toxicity, they are still safe for ingestion. Different risk coefficients were calculated, and they were compared with recommended safety limits specified by various agencies. Software tools such as QGIS 15, GraphPad Prism 8 and Surfer 15 were employed for developing maps and plots.


2009 ◽  
Vol 1 (2) ◽  
pp. 275-279 ◽  
Author(s):  
D. S. Malik ◽  
Pawan Kumar ◽  
Umesh Bharti

The present study aims to identify the ground water contamination problem in villages located in the close vicinity of Gajraula industrial area at Gajraula (U.P.), India. Ground water samples were collected from different villages at the depth of 40 and 120 feet from earth’s surface layer. Analytical techniques as described in the standard methods for examination of water and waste water were adopted for physico-chemical analysis of ground water samples and the results compared with the standards given by WHO and BIS guidelines for drinking water. Water quality index was calculated for quality standard of ground water for drinking purposes. The present investigation revealed that the water quality is moderately degraded due to high range of seven water quality parameters such as Temperature (18.33-32.36 0C), conductivity (925.45-1399.59 μmho/cm), TDS (610.80-923.73 mgL-1), Alkalinity (260.17- 339.83 mgL-1), Ca-Hardness (129.68-181.17 mgL-1), Mg-Hardness (94.07-113.50 mgLÉ1) and COD (13.99-25.62 mgL-1). The water quality index (WQI) also indicated the all the water quality rating comes under the standard marginal values (45-64) i.e. water quality is frequently threatened or impaired and conditions usually depart from natural or desirable levels.


Sign in / Sign up

Export Citation Format

Share Document