scholarly journals Accurate Prediction of Voltage of Battery Electrode Materials Using Attention Based Graph Neural Networks

Author(s):  
Steph-Yves Louis ◽  
Edirisuriya Siriwardane ◽  
Rajendra Joshi ◽  
Sadman Omee ◽  
Neeraj Kumar ◽  
...  

Performing first principle calculations to discover electrodes’ properties in the large chemical space is a challenging task. While machine learning (ML) has been applied to effectively accelerate those discoveries, most of the applied methods ignore the materials’ spatial information and only use pre-defined features: based only on chemical compositions. We propose two attention-based graph convolutional neural network techniques to learn the average voltage of electrodes. Our proposed method, which combines both atomic composition and atomic coordinates in 3D-space, improves the accuracy in voltage prediction by 17% when compared to composition based ML models. The first model directly learns the chemical reaction of electrodes and metal-ions to predict their average voltage, whereas the second model combines electrodes’ ML predicted formation energy (Eform) to compute their average voltage. Our models demonstrates improved accuracy in transferability from our subset of learned metal-ions to other metal-ions.

2021 ◽  
Author(s):  
Edirisuriya Siriwardane ◽  
Steph-Yves Louis ◽  
Rajendra Joshi ◽  
Neeraj Kumar ◽  
Jianjun Hu

2002 ◽  
Vol 47 (19) ◽  
pp. 3137-3149 ◽  
Author(s):  
M. Morcrette ◽  
Y. Chabre ◽  
G. Vaughan ◽  
G. Amatucci ◽  
J.-B. Leriche ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 664
Author(s):  
Shuai Tan ◽  
Theodore John Kraus ◽  
Mitchell Ross Helling ◽  
Rudolph Kurtzer Mignon ◽  
Franco Basile ◽  
...  

Coal-derived carbon nanofibers (CCNFs) have been recently found to be a promising and low-cost electrode material for high-performance supercapacitors. However, the knowledge gap still exists between holistic understanding of coal precursors derived from different solvents and resulting CCNFs’ properties, prohibiting further optimization of their electrochemical performance. In this paper, assisted by laser desorption/ionization (LDI) and gas chromatography–mass spectrometry (GC–MS) technologies, a systematic study was performed to holistically characterize mass distribution and chemical composition of coal precursors derived from various ionic liquids (ILs) as extractants. Sequentially, X-ray photoelectron spectroscopy (XPS) revealed that the differences in chemical properties of various coal products significantly affected the surface oxygen concentrations and certain species distributions on the CCNFs, which, in turn, determined the electrochemical performances of CCNFs as electrode materials. We report that the CCNF that was produced by an oxygen-rich coal fragment from C6mimCl ionic liquid extraction showed the highest concentrations of quinone and ester groups on the surface. Consequentially, C6mimCl-CCNF achieved the highest specific capacitance and lowest ion diffusion resistance. Finally, a symmetric carbon/carbon supercapacitor fabricated with such CCNF as electrode delivered an energy density of 21.1 Wh/kg at the power density of 0.6 kW/kg, which is comparable to commercial active carbon supercapacitors.


2013 ◽  
Vol 764 ◽  
pp. 266-283 ◽  
Author(s):  
Ibram Ganesh ◽  
Rekha Dom ◽  
P.H. Borse ◽  
Ibram Annapoorna ◽  
G. Padmanabham ◽  
...  

Different amounts of Fe, Co, Ni and Cu-doped TiO2 thin films were prepared on fluorine doped tin oxide (FTO) coated soda-lime glass substrates by following a conventional sol-gel dip-coating technique followed by heat treatment at 550 and 600°C for 30 min. These thin films were characterized for photo-current, chronoamperometry and band-gap energy values. The chemical compositions of metals-doped TiO2 thin films on FTO glass substrates were confirmed by XPS spectroscopic study. The metal-ions doped TiO2 thin films had a thickness of <200 nm="" optical="" transparency="" of="">80%, band-gap energy of >3.6 eV, and a direct band-to-band energy transition. The photoelectrochemical (PEC) studies revealed that all the metal-ions doped TiO2 thin films exhibit n-type semi-conducting behavior with a quite stable chronoamperometry and photo-currents that increase with the increase of applied voltage but decrease with the dopant metal-ion concentration in the thin film. Furthermore, these thin films exhibited flat-band potentials amenable to water oxidation reaction in a PEC cell. The 0.5 wt.% Cu-doped TiO2 thin film electrode exhibited an highest incident photon-to-current conversion efficiency (IPCE) of about 21%.


2016 ◽  
Vol 9 (3) ◽  
pp. 955-961 ◽  
Author(s):  
Jeongsik Yun ◽  
Jonas Pfisterer ◽  
Aliaksandr S. Bandarenka

This work reveals a three-stage mechanism of Na intercalation into one of the state-of-the-art battery electrode materials operating in aqueous electrolytes.


2007 ◽  
Vol 52 (22) ◽  
pp. 6346-6352 ◽  
Author(s):  
Yadong Wang ◽  
K. Zaghib ◽  
A. Guerfi ◽  
Fernanda F.C. Bazito ◽  
Roberto M. Torresi ◽  
...  

Author(s):  
Daniel J. Lyons ◽  
Jamie L. Weaver ◽  
Anne C. Co

Li distribution within micron-scale battery electrode materials is quantified with neutron depth profiling (NDP). This method allows the determination of intra- and inter-electrode parameters such as lithiation efficiency, electrode morphology...


2019 ◽  
Vol 31 (8) ◽  
pp. 1709-1718
Author(s):  
T. Veldevi ◽  
K. Thileep Kumar ◽  
R.A. Kalaivani ◽  
S. Raghu ◽  
A.M. Shanmugharaj

Hierarchical nanostructured graphene–manganese dioxide nanowire (G-MnO2-NW) composites have been prepared by hydrothermal synthesis route using water/1-decanol as the medium. Synthesized materials were analyzed using various characterization tools to corroborate their chemical compositions, structure/morphology and surface area. Electrochemical measurements of the synthesized G-MnO2-NW electrode materials delivered the highest specific capacity (255 Fg-1), high rate capability and improved cycling stability at 0.5 Ag–1 in 1M sodium sulfate solution and this fact may be attributed to its high surface area and porosity. Moreover, synthesized G-MnO2-NW electrodes displayed better energy and power density, when compared to the MnO2-NW based electrodes.


Sign in / Sign up

Export Citation Format

Share Document