Super-bridging Fibrous Materials for Water Treatment: Impacts on Removal of Plastic Particles, Phosphorus and Natural Organic Matter

Author(s):  
Mathieu Lapointe ◽  
Heidi Jahandideh ◽  
Jeffrey Farner ◽  
Nathalie Tufenkji

To deal with issues of process sustainability, cost, and efficiency, we developed materials reengineered from fibers to serve as super-bridging agents, adsorbents, and ballast media. These sustainable fiber-based materials considerably increased the floc size (~6630 µm) compared to conventional physicochemical treatment using a coagulant and a flocculant (~520 µm). The materials also reduced coagulant usage (up to 40%) and flocculant usage (up to 60%). These materials could be used in synergy with coagulants and flocculants to improve settling in existing water treatment processes and allow facilities to reduce their capital and operating costs as well as their environmental footprint. Moreover, the super-sized flocs produced using fiber-based materials (up to ~13 times larger compared to conventional treatment) enabled easy floc removal by screening, eliminating the need for a settling tank, a large and costly process unit. The materials can be effective solutions at removing classical (e.g., natural organic matter (NOM) and phosphorus) and emerging contaminants (e.g., microplastics and nanoplastics). Due to their large size, Si- and Fe-grafted fiber-based materials can be easily recovered from sludge and reused multiple times.

2021 ◽  
Author(s):  
Mathieu Lapointe ◽  
Heidi Jahandideh ◽  
Jeffrey Farner ◽  
Nathalie Tufenkji

Aggregation combined with gravitational separation is the most commonly used method to treat water globally, but it carries a significant economic and environmental burden as the chemicals used in the process (e.g., coagulants) generate ~8 million tons of metal-based sludge waste annually. To simultaneously deal with the issues of process sustainability, cost, and efficiency, we developed materials reengineered from pristine or waste fibers to serve as super-bridging agents, adsorbents, and ballast media. This study shows that these sustainable fiber-based materials considerably increased the floc size (~6630 µm) compared to conventional physicochemical treatment using a coagulant and a flocculant (~520 µm). The fiber-based materials also reduced coagulant (up to 40%) and flocculant usage (up to 60%). Moreover, the unprecedented size of flocs produced using fiber-based materials (up to ~13 times larger compared to conventional treatment) enabled easy floc removal by screening, thereby eliminating the need for a settling tank, a large and costly process unit. Our results show that fiber-based materials can be effective solutions at removing classical (e.g., natural organic matter (NOM) and phosphorus) and emerging contaminants (e.g., microplastics and nanoplastics). Due to their large size (> 3000 µm), some Si-grafted and Fe-grafted fiber-based materials can be easily recovered from settled/screened sludge and reused multiple times for coagulation/flocculation. Our results also show that these materials could be used in synergy with coagulants and flocculants to improve settling in existing water treatment processes. Furthermore, these reusable materials combined with separation via screening could allow global water treatment facilities to reduce their capital and operating costs as well as their environmental footprint.


2021 ◽  
Author(s):  
Mathieu Lapointe ◽  
Heidi Jahandideh ◽  
Jeffrey Farner ◽  
Nathalie Tufenkji

Aggregation combined with gravitational separation is the most commonly used method to treat water globally, but it carries a significant economic and environmental burden as the chemicals used in the process (e.g., coagulants) generate ~8 million tons of metal-based sludge waste annually. To simultaneously deal with the issues of process sustainability, cost, and efficiency, we developed materials reengineered from pristine or waste fibers (e.g., cellulose, polyester, cotton, and keratin) to serve as super-bridging agents, adsorbents and ballast media. This study shows that these sustainable materials (fibers, microspheres, and flakes functionalized with Si, Al and/or Fe) considerably increased the floc size (~6630 µm) compared to conventional physicochemical treatment (~520 µm; using alum and polyacrylamide). The fiber-based materials also reduced chemical usage (20–60 %) and improved contaminant removal during settling by increasing floc size and density. Moreover, the unprecedented size of flocs produced using fiber-based materials (13 times larger compared to conventional treatment) enabled easy floc removal by screening, thereby eliminating the need for a settling tank, a large and costly process unit used to treat more than 70% of water globally. Our results show that fiber-based materials can be effective solutions at removing classical (e.g., natural organic matter (NOM) and phosphorus, via electrostatic affinities) and emerging contaminants (e.g., microplastics and nanoplastics). Due to their large size (> 3000 µm), some Si-grafted and Fe-grafted fiber-based materials were easily recovered from settled/screened sludge and reused multiple times for coagulation/flocculation. These reusable materials combined with separation via screening could allow global water treatment facilities to reduce their capital and operating costs as well as their environmental footprint. Finally, our results also show that these materials could be used in synergy with coagulants and flocculants to improve existing water treatment plants for the removal of NOM, phosphorus, turbidity, total suspended solids and microplastics.


2007 ◽  
Vol 19 (3) ◽  
pp. 271-277 ◽  
Author(s):  
Ming-quan YAN ◽  
Dong-sheng WANG ◽  
Bao-you SHI ◽  
Qun-shan WEI ◽  
Jiu-hui QU ◽  
...  

2004 ◽  
Vol 4 (5-6) ◽  
pp. 43-48 ◽  
Author(s):  
Simon A. Parsons ◽  
Bruce Jefferson ◽  
Emma H. Goslan ◽  
Peter R. Jarvis ◽  
David A. Fearing

The characterisation and treatment of natural organic matter are becoming more important to the water utilities in the UK and around the world. This paper looks at the relationship between bulk and fractionated organic material and the performance of conventional water treatment processes.


2001 ◽  
Vol 1 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Don Bursill

On and follow Natural organic matter (NOM) derived from soil and vegetation in water catchments is the key factor influencing most, if not all water treatment processes. The structure of the NOM and its involvement in water treatment processes requires better understanding. It seems likely that a better understanding of NOM reactions could lead to far better predictive capacity for water treatment designers and operators. Certainly the removal of NOM as a first step to the production of drinking water has many attractions. This paper provides an overview of work done by the author and many of his colleagues to advance this issue.


2015 ◽  
Vol 15 (3) ◽  
pp. 442-455 ◽  
Author(s):  
Yue Zhang ◽  
Xinhua Zhao ◽  
Xinbo Zhang ◽  
Sen Peng

In the past decades, natural organic matter (NOM), which is a complex heterogeneous mixture of organic materials that are commonly present in all surface, ground and soil waters, has had an adverse effect on drinking water treatment. The existence of NOM results in many problems in drinking water treatment processes, and the properties and amount of NOM can significantly affect the efficiency of these processes. NOM not only influences the water quality with respect to taste, color and odor problems, but it also reacts with disinfectants, increasing the amount of disinfection by-products. NOM can be removed from drinking water via several treatment processes, but different drinking water treatment processes have diverse influences on NOM removal and the safety of the drinking water. Several treatment options, including coagulation, adsorption, oxidation, membrane and biological treatment, have been widely used in drinking water purification processes. Therefore, it is of great importance to be able to study the influence of different treatment processes on NOM in raw waters. The present review focuses on the methods, including coagulation, adsorption, oxidation, membrane, biological treatment processes and the combination of different treatment processes, which are used for removing NOM from drinking water.


Water SA ◽  
2020 ◽  
Vol 46 (1 January) ◽  
Author(s):  
Welldone Moyo ◽  
Nhamo Chaukura ◽  
Machawe M Motsa ◽  
Titus AM Msagati ◽  
Bhekie B Mamba ◽  
...  

The removal dynamics of biodegradable dissolved organic carbon (BDOC) and natural organic matter (NOM) polarity fractions at a water treatment plant (WTP) in South Africa was studied using UV-Vis absorbance, fluorescence excitation-emission matrix, and two-dimensional synchronous fluorescence spectroscopy (SFS). This study gave insights into the transformation of NOM due to treatment processes. The objectives of the study were: (i) to use chemometric analysis and two-dimensional SFS correlations to investigate the evolution of NOM arising from treatment processes, and (ii) to access the chemical profile dynamics of polarity and BDOC fractions throughout the treatment train. The UV254 absorbance, which indicates aromaticity, reduced by 45%  along the WTP. Gaussian fitting of UV-Vis data showed a decreasing trend in intensity and number of bands along the treatment process. The removal efficiency of NOM components followed the order: humic-like (HL) > tyrosine-like (TYL) > fulvic-like (FL) > tryptophan-like (TPL) > microbial-like (MBL).  At the source, the relative distribution of the hydrophobic (HPO), hydrophilic (HPI), and transphilic (TPI) fractions was 45%, 31%, and 24%, respectively. The HPI was recalcitrant to treatment, and the TYL component of the HPI fraction was conjectured to be a disinfection byproduct limiting reagent. The HL and FL components of the BDOC fraction were the major substrates for bacterial growth. According to two-dimensional-SFS correlation, TYL, TPL, and MBL varied concurrently across the treatment stages. Used for the first time in South Africa, the robustness of a multi-dimensional approach of optical methods coupled with chemometric tools for the assessment of the fate of NOM along the treatment processes was revealed by this study.


Sign in / Sign up

Export Citation Format

Share Document