scholarly journals Sustainable Fiber-Based Materials as Super-bridging Agents, Adsorbents, and Ballast Media

Author(s):  
Mathieu Lapointe ◽  
Heidi Jahandideh ◽  
Jeffrey Farner ◽  
Nathalie Tufenkji

Aggregation combined with gravitational separation is the most commonly used method to treat water globally, but it carries a significant economic and environmental burden as the chemicals used in the process (e.g., coagulants) generate ~8 million tons of metal-based sludge waste annually. To simultaneously deal with the issues of process sustainability, cost, and efficiency, we developed materials reengineered from pristine or waste fibers (e.g., cellulose, polyester, cotton, and keratin) to serve as super-bridging agents, adsorbents and ballast media. This study shows that these sustainable materials (fibers, microspheres, and flakes functionalized with Si, Al and/or Fe) considerably increased the floc size (~6630 µm) compared to conventional physicochemical treatment (~520 µm; using alum and polyacrylamide). The fiber-based materials also reduced chemical usage (20–60 %) and improved contaminant removal during settling by increasing floc size and density. Moreover, the unprecedented size of flocs produced using fiber-based materials (13 times larger compared to conventional treatment) enabled easy floc removal by screening, thereby eliminating the need for a settling tank, a large and costly process unit used to treat more than 70% of water globally. Our results show that fiber-based materials can be effective solutions at removing classical (e.g., natural organic matter (NOM) and phosphorus, via electrostatic affinities) and emerging contaminants (e.g., microplastics and nanoplastics). Due to their large size (> 3000 µm), some Si-grafted and Fe-grafted fiber-based materials were easily recovered from settled/screened sludge and reused multiple times for coagulation/flocculation. These reusable materials combined with separation via screening could allow global water treatment facilities to reduce their capital and operating costs as well as their environmental footprint. Finally, our results also show that these materials could be used in synergy with coagulants and flocculants to improve existing water treatment plants for the removal of NOM, phosphorus, turbidity, total suspended solids and microplastics.

2021 ◽  
Author(s):  
Mathieu Lapointe ◽  
Heidi Jahandideh ◽  
Jeffrey Farner ◽  
Nathalie Tufenkji

Aggregation combined with gravitational separation is the most commonly used method to treat water globally, but it carries a significant economic and environmental burden as the chemicals used in the process (e.g., coagulants) generate ~8 million tons of metal-based sludge waste annually. To simultaneously deal with the issues of process sustainability, cost, and efficiency, we developed materials reengineered from pristine or waste fibers to serve as super-bridging agents, adsorbents, and ballast media. This study shows that these sustainable fiber-based materials considerably increased the floc size (~6630 µm) compared to conventional physicochemical treatment using a coagulant and a flocculant (~520 µm). The fiber-based materials also reduced coagulant (up to 40%) and flocculant usage (up to 60%). Moreover, the unprecedented size of flocs produced using fiber-based materials (up to ~13 times larger compared to conventional treatment) enabled easy floc removal by screening, thereby eliminating the need for a settling tank, a large and costly process unit. Our results show that fiber-based materials can be effective solutions at removing classical (e.g., natural organic matter (NOM) and phosphorus) and emerging contaminants (e.g., microplastics and nanoplastics). Due to their large size (> 3000 µm), some Si-grafted and Fe-grafted fiber-based materials can be easily recovered from settled/screened sludge and reused multiple times for coagulation/flocculation. Our results also show that these materials could be used in synergy with coagulants and flocculants to improve settling in existing water treatment processes. Furthermore, these reusable materials combined with separation via screening could allow global water treatment facilities to reduce their capital and operating costs as well as their environmental footprint.


2021 ◽  
Author(s):  
Mathieu Lapointe ◽  
Heidi Jahandideh ◽  
Jeffrey Farner ◽  
Nathalie Tufenkji

To deal with issues of process sustainability, cost, and efficiency, we developed materials reengineered from fibers to serve as super-bridging agents, adsorbents, and ballast media. These sustainable fiber-based materials considerably increased the floc size (~6630 µm) compared to conventional physicochemical treatment using a coagulant and a flocculant (~520 µm). The materials also reduced coagulant usage (up to 40%) and flocculant usage (up to 60%). These materials could be used in synergy with coagulants and flocculants to improve settling in existing water treatment processes and allow facilities to reduce their capital and operating costs as well as their environmental footprint. Moreover, the super-sized flocs produced using fiber-based materials (up to ~13 times larger compared to conventional treatment) enabled easy floc removal by screening, eliminating the need for a settling tank, a large and costly process unit. The materials can be effective solutions at removing classical (e.g., natural organic matter (NOM) and phosphorus) and emerging contaminants (e.g., microplastics and nanoplastics). Due to their large size, Si- and Fe-grafted fiber-based materials can be easily recovered from sludge and reused multiple times.


1986 ◽  
Vol 18 (7-8) ◽  
pp. 307-311 ◽  
Author(s):  
A. Donáth-Jobbágy ◽  
J. Káimán ◽  
R. Hajós

The efficiency of two possible intensification methods of activated sludge waste water treatment (pure oxygen activation and activated carbon addition) were compared. Experiments were carried out in laboratory scale equipment with variable reactor volume (maximum capacity 20,0 dm3, settling tank vol. 15 dm3). In order to detect even minor differences, we operated completely identical units in parallel runs, with one representing a traditional system as reference. A model sewage of industrial character, diluted milk, was used as influent and in the course of activated carbon intensification experiments an anion-active detergent was added as a poorly biodegradable model material to be removed mainly by adsorption. Reactor loads were gradually increased - from low values to overloading - by decreasing the dilution of milk or by reducing reactor volume. The effects of different intensification methods on the effluent pollution level (COD value and anion-active detergent content) and on the settling properties of sludge were examined as a function of loading. The efficiency of both intensification methods was found to be increasing with increasing loading. Comparison of the two systems showed activated carbon intensification to be more efficient in the removal of soluble COD and extremely useful in the elimination of a poorly biodegradable material.


1998 ◽  
Vol 38 (3) ◽  
pp. 237-244 ◽  
Author(s):  
Kan Chichuan ◽  
Huang Chihpin

Coagulant dosing is traditionally determined according to results from jar-tests or operator's experience, which often lead to overdosing or insufficient dosing. In this study, the feasibility of applying an optical monitoring technique to determine chemical dosage and to monitor the coagulation performance in water treatment plants were assessed. To examine the applicability of the monitor under various operation conditions, series of batch trials in the field were conducted to explore the effects of turbidity, pH and rapid mixing intensity on the effectiveness of coagulation. The performance was directly reflected in the output ratio of the monitor, which proved to be an effective index for the floc size and its settling velocity. Therefore, we consider that the optical monitor is an useful instrument in monitoring coagulation in water treatment.


Author(s):  
Maria Y. Savostyanova ◽  
◽  
Lidia А. Norina ◽  
Arina V. Nikolaeva ◽  
◽  
...  

Retaining of water resources quality is one of the global ecological problems of the modern time. The most promising direction in solving the problem of water resources protection is the reduction of negative environmental influence of waste water from production facilities by upgrading the existing water treatment technologies. To treat utility water, technical and rain water from site facilities of Transneft system entities, the specialists developed and approved standard technological diagrams, which are used in producing treatment facilities. The standard technological diagrams provide for all necessary stages of waste water treatment ensures the reduction of pollution level to normal values. However, during operation of treatment facilities it was established, that to ensure the required quality of waste water treatment with initially high levels of pollution, the new technological solutions are necessary. The author presents the results of scientific-research work, in the context of which the best affordable technologies were identified in the area of the treatment of waste water with increased content of pollutants and non-uniform ingress pattern. On the basis of the research results the technical solutions were developed for optimization of operation of existing waste water treatment facilities by means of using combined treatment of technical and rain waters and utility waste waters and applying bioreactor with movable bed – biochips. The use of bioreactor with movable bed allows the increase in the area of active surface, which facilitates increase and retention of biomass. Biochips are completely immersed into waste waters, and biofilm is formed on the entire volume of immersion area, facilitating retention of biomass and preventing formation of sediments. Due to mixing the floating device with biofilm constantly moves along the whole area of bioreactor, and, in doing so, speeds up biochemical processes and uniformity of treatment. The advantages of a bioreactor with movable bed – its active sludge durability against increased and changing pollutant concentrations, change of waste water temperature and simplicity of application – ensured the possibility of its use for blending utility waters, technical and rain waters.


2010 ◽  
Vol 5 (4) ◽  
Author(s):  
M.C. White PE ◽  
M.J. Kosterman

At time of commissioning, the Racine, Wisconsin, USA ultrafiltration (UF) membrane treatment system fail short of meeting its operational goals concerning capacity and chemical cleaning intervals. The systematic optimization of this 189-million-litre-per-day (MLD) capacity UF system provided tangible operational benefits, which included a 30-percent reduction in power use, a 50-percent reduction in chlorine chemical use, a 36-percent reduction in citric acid use and a simultaneous 7-percent increase in net treatment capacity of the system. In addition, the optimization program reduced the level of buildup of foulants on the surface of the membranes. This paper summarizes the optimization procedures followed at Racine, discussing how similar measures may be applicable to other water treatment facilities.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2609-2612
Author(s):  
D.-Th. Kollatsch

The most important task of urban drainage and waste water treatment in the future is the environmental care of rivers and receiving waters. For this it is necessary to have a look at all discharges of sewer systems and treatment facilities. With simulation models the interactions between surface, sewer systems, overflow structures and treatment facilities can be shown. With these models the efficiency of upgrading measures can be proved in all parts of urban water systems.


2010 ◽  
Vol 10 (2) ◽  
pp. 121-127 ◽  
Author(s):  
Kim van Schagen ◽  
Luuk Rietveld ◽  
Alex Veersma ◽  
Robert Babuška

The performance of a drinking-water treatment plant is determined by the control of the plant. To design the appropriate control system, a control-design methodology of five design steps is proposed, which takes the treatment process characteristics into account. For each design step, the necessary actions are defined. Using the methodology for the pellet-softening treatment step, a new control scheme for the pellet-softening treatment step has been designed and implemented in the full-scale plant. The implementation resulted in a chemical usage reduction of 15% and reduction in the maintenance effort for this treatment step. Corrective actions of operators are no longer necessary.


Sign in / Sign up

Export Citation Format

Share Document