scholarly journals Semi-automated high-throughput substrate screening assay for nucleoside kinases

Author(s):  
Katja Hellendahl ◽  
Maryke Fehlau ◽  
Sebastian Hans ◽  
Peter Neubauer ◽  
Anke Kurreck

Nucleoside kinases (NKs) are key enzymes involved in the in vivo phosphorylation of nucleoside analogues used as drugs to treat cancer or viral infections. Having different specificities, the characterization of NKs is essential for drug design and the production of nucleotide analogues in an in vitro enzymatic process. Therefore, a fast and reliable substrate screening assay for NKs is of great importance. Here, we report the validation of a well-known luciferase-based assay for the detection of NK activity in 96-well plate format. The assay was semi-automated using a liquid handling robot. A good linearity was demonstrated (r² >0.98) in the range of 0 to 500 µM ATP, and it was shown that also alternative phosphate donors like dATP or CTP were accepted by the luciferase. The developed high-throughput assay revealed comparable results to HPLC analysis. The assay was exemplary used for the comparison of the substrate spectra of four nucleoside kinases using 20 (8 natural and 12 modified) substrates. The screening results correlated well with literature data and, additionally, previously unknown substrates were identified for three of the NKs studied. Our results demonstrate that the developed semi-automated high-throughput assay is suitable to identify best performing NKs for a wide range of substrates.

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0126120 ◽  
Author(s):  
Pamela T. Wong ◽  
Pascale R. Leroueil ◽  
Douglas M. Smith ◽  
Susan Ciotti ◽  
Anna U. Bielinska ◽  
...  

2013 ◽  
Vol 81 (9) ◽  
pp. 3068-3076 ◽  
Author(s):  
Carolyn R. Morris ◽  
Christen L. Grassel ◽  
Julia C. Redman ◽  
Jason W. Sahl ◽  
Eileen M. Barry ◽  
...  

ABSTRACTShigellaspecies Gram-negative bacteria which cause a diarrheal disease, known as shigellosis, by invading and destroying the colonic mucosa and inducing a robust inflammatory response. With no vaccine available, shigellosis annually kills over 600,000 children in developing countries. This study demonstrates the utility of combining high-throughput bioinformatic methods within vitroandin vivoassays to provide new insights into pathogenesis. Comparisons ofin vivoandin vitrogene expression identified genes associated with intracellular growth. Additional bioinformatics analyses identified genes that are present inS. flexneriisolates but not in the three otherShigellaspecies. Comparison of these two analyses revealed nine genes that are differentially expressed during invasion and that are specific toS. flexneri. One gene, a DeoR family transcriptional regulator with decreased expression during invasion, was further characterized and is now designatedicgR, forintracellulargrowthregulator. Deletion oficgRcaused no difference in growthin vitrobut resulted in increased intracellular replication in HCT-8 cells. Furtherin vitroandin vivostudies using high-throughput sequencing of RNA transcripts (RNA-seq) of an isogenic ΔicgRmutant identified 34 genes that were upregulated under both growth conditions. This combined informatics and functional approach has allowed the characterization of a gene and pathway previously unknown inShigellapathogenesis and provides a framework for further identification of novel virulence factors and regulatory pathways.


2009 ◽  
Vol 188 (2) ◽  
pp. 98-103 ◽  
Author(s):  
Andrew J. Olaharski ◽  
Hirdesh Uppal ◽  
Matthew Cooper ◽  
Stefan Platz ◽  
Tanja S. Zabka ◽  
...  

Author(s):  
María Fernanda García-Bustos ◽  
Agustín Moya Álvarez ◽  
Cecilia Pérez Brandan ◽  
Cecilia Parodi ◽  
Andrea Mabel Sosa ◽  
...  

Antimonials continue to be considered the first-line treatment for leishmaniases, but its use entails a wide range of side effects and serious reactions. The search of new drugs requires the development of methods more sensitive and faster than the conventional ones. We developed and validated a fluorescence assay based in the expression of tdTomato protein by Leishmania, and we applied this method to evaluate the activity in vitro of flavonoids and reference drugs. The pIR1SAT/tdTomato was constructed and integrated into the genome of Leishmania (Leishmania) amazonensis. Parasites were selected with nourseothricin (NTC). The relation of L. amaz/tc3 fluorescence and the number of parasites was determined; then the growth in vitro and infectivity in BALB/c mice was characterized. To validate the fluorescence assay, the efficacy of miltefosine and meglumine antimoniate was compared with the conventional methods. After that, the method was used to assess in vitro the activity of flavonoids; and the mechanism of action of the most active compound was evaluated by transmission electron microscopy and ELISA. A linear correlation was observed between the emission of fluorescence of L. amaz/tc3 and the number of parasites (r2 = 0.98), and the fluorescence was stable in the absence of NTC. No differences were observed in terms of infectivity between L. amaz/tc3 and wild strain. The efficacy of miltefosine and meglumine antimoniate determined by the fluorescence assay and the microscopic test showed no differences, however, in vivo the fluorescence assay was more sensitive than limiting dilution assay. Screening assay revealed that the flavonoid galangin (GAL) was the most active compound with IC50 values of 53.09 µM and 20.59 µM in promastigotes and intracellular amastigotes, respectively. Furthermore, GAL induced mitochondrial swelling, lipid inclusion bodies and vacuolization in promastigotes; and up-modulated the production of IL-12 p70 in infected macrophages. The fluorescence assay is a useful tool to assess the anti-leishmanial activity of new compounds. However, the assay has some limitations in the macrophage-amastigote model that might be related with an interfere of flavanol aglycones with the fluorescence readout of tdTomato. Finally, GAL is a promising candidate for the development of new treatment against the leishmaniasis.


Author(s):  
Nieves Baenas ◽  
Jenny Ruales ◽  
Diego A. Moreno ◽  
Daniel Alejandro Barrio ◽  
Carla M. Stinco ◽  
...  

Andean blueberries are wild berries grown and consumed in Ecuador which contain high values of bioactive compounds, mainly anthocyanins, with powerful antioxidant activity. The aim of this study was to evaluate the profile and contents of (poly)phenols and carotenoids in Andean blueberry by HPLC-DAD-MSn and determine a wide range of its biological activities. The antioxidant capacity of this fruit was evaluated in vitro by three different methods and in vivo using the zebrafish animal model, also the toxicity effect was determined by the zebrafish embryogenesis test. Besides, the antimicrobial activity and the capacity of Andean blueberry to produce hemagglutination in blood cells were evaluated. Finally, the bioaccessibility of (poly)phenols and related antioxidant capacity were determined in the different phases of an in vitro digestion. The global results indicated no toxicity of Andean blueberry, weakly bacteriostatic activity, and high contents of anthocyanins and antioxidant capacity, which were partially bioaccesible in vitro (~ 50 % at the final intestinal step), contributing to the knowledge of its health benefits for consumers and its potential use in the food and pharmaceutical industry as functional ingredient.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Brent Townshend ◽  
Joy S. Xiang ◽  
Gabriel Manzanarez ◽  
Eric J. Hayden ◽  
Christina D. Smolke

AbstractBiosensors are key components in engineered biological systems, providing a means of measuring and acting upon the large biochemical space in living cells. However, generating small molecule sensing elements and integrating them into in vivo biosensors have been challenging. Here, using aptamer-coupled ribozyme libraries and a ribozyme regeneration method, de novo rapid in vitro evolution of RNA biosensors (DRIVER) enables multiplexed discovery of biosensors. With DRIVER and high-throughput characterization (CleaveSeq) fully automated on liquid-handling systems, we identify and validate biosensors against six small molecules, including five for which no aptamers were previously found. DRIVER-evolved biosensors are applied directly to regulate gene expression in yeast, displaying activation ratios up to 33-fold. DRIVER biosensors are also applied in detecting metabolite production from a multi-enzyme biosynthetic pathway. This work demonstrates DRIVER as a scalable pipeline for engineering de novo biosensors with wide-ranging applications in biomanufacturing, diagnostics, therapeutics, and synthetic biology.


Author(s):  
BH Wang ◽  
D Pelz ◽  
D Lee ◽  
MR Boulton ◽  
SP Lownie

Background: Brain arteriovenous malformations (AVM’s) are abnormal connections between arteries and veins. Endovascular glue embolization with N-butyl cyanoacrylate (NBCA) is an accepted form of treatment, with most complications related to timing of polymerization. Current literature reports a wide range of polymerization times with large discrepancies between in-vivo and in-vitro results. Methods: Polymerization time was measured for mixtures of lipiodol/NBCA of 50/50, 60/40, 70/30. The influence of pH, temperature and presence of biological catalysts on polymerization rate was investigated in-vivo using submerged droplet tests. PVA-C, silicone and endothelium surfaces were compared and contact angles were measured to assess physical interaction with NBCA. High-speed video of glue injection through a microcatheter was captured to characterize coaxial flow. Results: Polymerization rate increases with pH and temperature. A hydrophilic substrate such as PVA-C provides surface properties that are most similar to endothelium. Endothelium provides a catalytic surface that increases the rate of polymerization. Blood products further increase the polymerization rate with RBC’s providing almost instantaneous polymerization of NBCA upon contact. Characterization of coaxial flow shows dripping to jetting transition with significant wall effect. Conclusions: We have successfully deconstructed and characterized the dynamic behavior of NBCA embolization. A refined understanding of NBCA behavior could help reduce embolization-related complications.


2020 ◽  
Author(s):  
Brent Townshend ◽  
Joy Xiang ◽  
Gabriel Manzanarez ◽  
Eric Hayden ◽  
Christina Smolke

AbstractBiosensors are key components in engineered biological systems, providing a means of measuring and acting upon the large biochemical space in living cells. However, generating small molecule sensing elements and integrating them into in vivo biosensors have been challenging. Using aptamer-coupled ribozyme libraries and a novel ribozyme regeneration method, we developed de novo rapid in vitro evolution of RNA biosensors (DRIVER) that enables multiplexed discovery of biosensors. With DRIVER and high-throughput characterization (CleaveSeq) fully automated on liquid-handling systems, we identified and validated biosensors against six small molecules, including five for which no aptamers were previously found. DRIVER-evolved biosensors were applied directly to regulate gene expression in yeast, displaying activation ratios up to 33-fold. DRIVER biosensors were also applied in detecting metabolite production from a multi-enzyme biosynthetic pathway. This work demonstrates DRIVER as a scalable pipeline for engineering de novo biosensors with wide-ranging applications in biomanufacturing, diagnostics, therapeutics, and synthetic biology.


2002 ◽  
Vol 196 (6) ◽  
pp. 829-839 ◽  
Author(s):  
Margarida Saraiva ◽  
Philip Smith ◽  
Padraic G. Fallon ◽  
Antonio Alcami

CD30 is up-regulated in several human diseases and viral infections but its role in immune regulation is poorly understood. Here, we report the expression of a functional soluble CD30 homologue, viral CD30 (vCD30), encoded by ectromelia (mousepox) virus, a poxvirus that causes a severe disease related to human smallpox. We show that vCD30 is a 12-kD secreted protein that not only binds CD30L with high affinity and prevents its interaction with CD30, but it also induces reverse signaling in cells expressing CD30L. vCD30 blocked the generation of interferon γ–producing cells in vitro and was a potent inhibitor of T helper cell (Th)1- but not Th2-mediated inflammation in vivo. The finding of a CD30 homologue encoded by ectromelia virus suggests a role for CD30 in antiviral defense. Characterization of the immunological properties of vCD30 has uncovered a role of CD30–CD30L interactions in the generation of inflammatory responses.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3748-3748
Author(s):  
Pamela S. Becker ◽  
Vivian Oehler ◽  
Elihu H. Estey ◽  
Timothy Martins ◽  
Andrea Perdue ◽  
...  

Abstract Introduction. Resistance to therapy, rather than treatment-related mortality, is the usual cause of failure to cure AML. Typically all patients receive the same therapy despite great inter-patient variation in the mutations that underlie the disease. Thus an individualized approach to therapy might be more productive. To this end, we developed a high-throughput sensitivity assay for 160 drugs; 45 are FDA approved and 115 investigational, encompassing a wide range of targets and mechanisms of action. We previously validated the assay in 30 primary patient blast samples and 14 acute leukemia cell lines. Here we report a clinical trial (NCT01872819 at clinicaltrials.gov) utilizing this assay to select drugs for patients with refractory AML. Method. The primary objectives were to obtain assay results within 10 days and initiate treatment within 21 days. The secondary objective was to achieve a response (cytoreduction or at least partial response) greater that that expected for comparable refractory populations with other therapies. Mononuclear cells from marrow or peripheral blood were obtained by density centrifugation and enriched for blasts using magnetic bead separation if the initial sample contained < 80% blasts. Cells were incubated in coated 384 well plates overnight, then drugs were added at 8 concentrations spanning 4 log orders of magnitude, in duplicate. After 4 days, live cells were detected with CellTiter-Glo® (Promega). XLfit (idbs) was used to plot survival curves (4 parameter logistic dose fit) and to calculate EC50s. Individual drugs were chosen on the basis of EC50 and drug availability, and patients received the single agents at the accepted maximal tolerated dose. Results. Fifteen patients were enrolled. Ten had unfavorable cytogenetics, and 3 had the Flt3ITD and 1 the Flt3D835 mutation. Eight patients had antecedent hematologic disorder. They had received an average of 5 prior therapies (range 3-6). The average time from sample procurement to assay result was 5.1 days (range 4-8). Within an average of 11.6 (median 9, range 4-28) days, 13 patients received single drugs to which their cells appeared to be sensitive with an EC50 range of 0.026 - 0.175 μmol/L , including cladribine, mitoxantrone, bortezomib, or vinblastine. For the patient with the Flt3ITD mutation, the blasts exhibited sensitivity to 6 Flt3 inhibitors in the high throughput assay. Although only FDA approved drugs were able to be procured, as the pharmaceutical companies denied requests for individual patient use, most patients received a drug they had not previously received. All patients exhibited a decline in blast number after receipt of the indicated drug, on average, by 92.6% (range 80.5-99.8%). Toxicity was as expected if the patients had received standard investigational protocols for relapsed/refractory AML. Median overall survival was 88 (range 7-276) days from start of treatment. For one patient without circulating blasts, the marrow blast percent declined from 27% by flow to 0% at day 15 and also 0% at day 51. 6 of 9 evaluable participants exhibited a reduction in bone marrow blasts by flow cytometry on a day 14-21 marrow. There were also 2 patients whose day 14-21 marrows were severely hypocellular. Moreover, 1 patient achieved CR, and 2 patients, CRp, that occurred after additional cycles of combination chemotherapy regimens for 2 of the 3 patients, that included drugs identified by the high throughput assay. Conclusion. In vitro high throughput testing to guide individual treatment choice is feasible and warrants further evaluation in larger clinical trials, with panels that include investigational drugs. Disclosures Off Label Use: Cladribine is indicated for the treatment of hairy cell leukemia. Vinblastine is indicated for the treatment of Hodgkin's disease and testicular cancer, and some other cancers. Bortezomib is indicated for the treatment of multiple myeloma and mantle cell lymphoma.


Sign in / Sign up

Export Citation Format

Share Document