In vitro to in vivo concordance of a high throughput assay of bone marrow toxicity across a diverse set of drug candidates

2009 ◽  
Vol 188 (2) ◽  
pp. 98-103 ◽  
Author(s):  
Andrew J. Olaharski ◽  
Hirdesh Uppal ◽  
Matthew Cooper ◽  
Stefan Platz ◽  
Tanja S. Zabka ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 403
Author(s):  
Girolamo Di Maio ◽  
Nicola Alessio ◽  
Ibrahim Halil Demirsoy ◽  
Gianfranco Peluso ◽  
Silverio Perrotta ◽  
...  

Brown-like adipocytes can be induced in white fat depots by a different environmental or drug stimuli, known as “browning” or “beiging”. These brite adipocytes express thermogenin UCP1 protein and show different metabolic advantages, such as the ability to acquire a thermogenic phenotype corresponding to standard brown adipocytes that counteracts obesity. In this research, we evaluated the effects of several browning agents during white adipocyte differentiation of bone marrow-derived mesenchymal stromal cells (MSCs). Our in vitro findings identified two compounds that may warrant further in vivo investigation as possible anti-obesity drugs. We found that rosiglitazone and sildenafil are the most promising drug candidates for a browning treatment of obesity. These drugs are already available on the market for treating diabetes and erectile dysfunction, respectively. Thus, their off-label use may be contemplated, but it must be emphasized that some severe side effects are associated with use of these drugs.


2021 ◽  
Author(s):  
Katja Hellendahl ◽  
Maryke Fehlau ◽  
Sebastian Hans ◽  
Peter Neubauer ◽  
Anke Kurreck

Nucleoside kinases (NKs) are key enzymes involved in the in vivo phosphorylation of nucleoside analogues used as drugs to treat cancer or viral infections. Having different specificities, the characterization of NKs is essential for drug design and the production of nucleotide analogues in an in vitro enzymatic process. Therefore, a fast and reliable substrate screening assay for NKs is of great importance. Here, we report the validation of a well-known luciferase-based assay for the detection of NK activity in 96-well plate format. The assay was semi-automated using a liquid handling robot. A good linearity was demonstrated (r² >0.98) in the range of 0 to 500 µM ATP, and it was shown that also alternative phosphate donors like dATP or CTP were accepted by the luciferase. The developed high-throughput assay revealed comparable results to HPLC analysis. The assay was exemplary used for the comparison of the substrate spectra of four nucleoside kinases using 20 (8 natural and 12 modified) substrates. The screening results correlated well with literature data and, additionally, previously unknown substrates were identified for three of the NKs studied. Our results demonstrate that the developed semi-automated high-throughput assay is suitable to identify best performing NKs for a wide range of substrates.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1871-1871
Author(s):  
Isabella Angela Iasenza ◽  
Safia Safa ◽  
Frederic Barabe ◽  
Sonia Cellot ◽  
Brian T. Wilhelm ◽  
...  

Abstract Acute myeloid leukemia (AML) is an aggressive form of blood cancer defined by the uncontrolled proliferation and clonal expansion of immature myeloblast cells in the blood and bone marrow, leading to hematopoietic failure. Despite the use of aggressive and cytotoxic standard-of-care drugs, patients often relapse and succumb to the disease partially due to the inability of medically unfit patients to withstand the cytotoxic treatments, regrowth from minimal residual disease and the chemo-resistant nature of leukemic stem cells (LSCs) which can remain in a quiescent state and reside in a protective bone marrow niche. Hence, novel therapies targeting unique leukemic stem cell biology are highly needed to eliminate and avoid reoccurrence. High-throughput screens of human AML LSCs are not performed due to technical issues such as low LSC frequency within primary samples, an inability to purify LSCs, and the difficulty maintaining and expanding primary patient samples and LSCs in vitro. We were able to optimize conditions for a 4-week in vitro large-scale expansion (>600 million bulk) of the primary human AML sample 8227 (OCI-AML-8227), functionally validated to be enriched for LSCs in long-term xenotransplant assays (Eppert et al., 2011). These optimized conditions enabled the isolation and maintenance of the LSC-containing fraction for a chemical screen. We isolated the CD34+ LSC-containing fraction (>90% purity) and performed a high-throughput screen of 11,166 chemical molecules using a CellTiter Glo assay followed by a counter screen against normal CD34+ cord blood (CB) hematopoietic stem and progenitor cells. From this HT screen, a total of 61 hits had >70% inhibition on CD34+ 8227 cells and <30% inhibition on CD34+ CB cells. We also identified glucocorticoids, which were also identified in our prior small-scale anti-LSC screen where they were found to specifically drive human LSCs to terminally differentiate (Laverdière & Boileau, et al., 2018). We then performed dose response assays for each candidate compounds and confirmed 35 potent anti-LSC compounds with IC 50 < 1 μM. This refined the types of compounds to including anti-apoptotic inhibitors, GSK inhibitors, protease inhibitors, metabolism inhibitors, HDAC inhibitors, BET inhibitors, nucleic acid synthesis inhibitors, cell cycle inhibitors and Wnt/β-catenin inhibitors. This is interesting as some of the classes of these compounds (inhibitors of GSK, BET, nucleic acid synthesis, Wnt/β-catenin and metabolism) have been shown to target bulk and leukemic stem cells in AML in vitro and in vivo. We now aim to examine LSC eradication in a panel of genetically defined primary AMLs confirmed through in vitro and in vivo assays. Our goal is to be able to understand and establish the molecular mechanisms and biomarkers on primary functional LSCs. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2243-2243
Author(s):  
Johannes Waldschmidt ◽  
Dagmar Wider ◽  
Anna Simon ◽  
Andreas R. Thomsen ◽  
Christine Aldrian ◽  
...  

Abstract Introduction: In the past decade, substantial progress has been made in the understanding of multiple myeloma (MM) cell biology and its interaction with the bone marrow microenvironment (BMM). Binding of MM cells to BM stroma cells (BMSCs) alters the expression of SDF-1α and its receptor CXCR4, leading to the secretion of anti-apoptotic cytokines, promoting tumor growth, drug resistance and migration. MM cancer stem cells migrate to endosteal BM niches, where they escape therapies in a quiescent state causing relapse in the course of the disease. The development of novel agents that aim to target the MM and BMM interaction includes drugs as promising as 2nd and 3rdgeneration IMIDs or proteasome inhibitors. Despite these profound advances, the failure rate of preclinically proven cytotoxic single substances is sizeable, as preclinical models often lack the biological, genetic, etiological and immunological properties of the disease (Schüler, Expert. Opin. Biol. Ther. 2013; Kortüm. CLML 2014; Rongvaux. Annu Rev Immunol 2013). Methods & Results: We have previously demonstrated that BM interaction and homing to niches, mediated by the adhesion molecules CXCR4, CD49d and CD44, protect MM cell lines (MMCL) and primary plasma cells (PC) from the cytotoxic effect of anti-MM agents, such as bortezomib (Bor), vorinostat (Vor) and pomalidomide (Pom). Our in vitro and in vivo observed cytotoxic effects from Bor, Vor and Pom confirmed their potent cytotoxicity, whereas cocultivation with M2-10B4 substantially reduced apoptosis and induced tumor protective effects. Additional treatment with the CXCR4 inhibitor AMD3100 blocked CXCR4 in coculture, but left CD49d, CD44 and CD11a widely unchanged. Toxic or therapeutic effects from AMD3100 monotherapy were excluded for the doses used. Comparison of the CXCR4 antibody (ab)-clones 12G5, 44717 and 4G10 revealed that AMD3100 treatment of U266 cells reduced CXCR4 expression with use of 12G5 and 44717, whereas binding of both FITC- and PE-coupled 4G10 was not influenced, making the latter the most reliable for CXCR4 analysis. Use of image cytometry (IC) allowed accurate visualization of co-localisation of CXCR4 expression both on the cell surface and within the cytoplasm of MM cells. IC correlated with flow cytometry-determined CXCR4 expression and allowed the detailed assessment of treatment studies with and without anti-MM agents and AMD3100. Of note, AMD3100 resensitized MM cells to Bor, Vor and Pom (Waldschmidt. Blood 2012:2450), whereas carfilzomib (Cfz) reduced CXCR4 expression in MMCL and could not be antagonized by stroma coculture. Cfz sensitivity was not increased by adding AMD3100 (Simon. Blood 2013:3851). These preclinical studies need additional adaptation to the clinical setting in order to surpass prior drug failure rates, and there is a need to develop more broadly available and better predictive preclinical systems. Therefore, we are currently assessing a 3D co-culture MM model composed of agarose matrix interlayers, based on a novel liquid overlay technique. This model has been specifically adapted to MM cell and BM component interactions as described (Udi. BJH 2013; Zlei. Exp Hematol 2007; Schüler. EOBT 2013). MM cells are cultivated in conical microwells of a non-adherent agarose matrix after BMSCs were plated on the bottom of each plate, allowing the diffusion of soluble cytokines but no direct contact between BMSC and MMCL. Therein, we are presently testing novel anti-MM substances in comparison to our standard-coculture system. Conclusion: Targeting microenvironmental mediators, like SDF-1α and CXCR4, is a promising approach to expand the choice of antimyeloma agents and amplify the effects of established antimyeloma drugs, as previously shown by us and others for the combination of AMD3100 and Bor or Pom. However, as our knowledge on MM and its BMM has dramatically increased a great effort has been made in the preclinical testing of promising new anti-MM agents, and more complex high-throughput in vitro models are urgently needed to better predict the potency of these substances in order to reduce dropouts in clinical trials. We hereby provide a novel approach which better reflects the spatial growth of human MM samples in BMSC coculture, and more closely mimics the growth and proliferation of human MM clones in vivo. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3743-3743
Author(s):  
James Tsai ◽  
Elizabeth A Burton ◽  
Gaston Habets ◽  
Brian West ◽  
Paul Lin ◽  
...  

Abstract Introduction: While clinical studies using targeted therapies as single agents in AML have shown promising results in recent years, long-term durable responses in this aggressive cancer may require combination therapies to overcome disease progression and single agent resistance mechanisms. PLX3397 is an orally active, selective small molecule inhibitor of the constitutively activated FLT3-ITD mutant kinase. In cellular assays PLX3397 effectively inhibited FLT3-ITD autophosphorylation and FLT3-ITD driven proliferation with IC50s in the 10-100nM range. A clinical study to evaluate the pharmacokinetics (PK), safety and efficacy of PLX3397 in patients with FLT3-ITD AML is currently ongoing. In order to determine if combination therapy could improve efficacy, we evaluated the combination of PLX3397 with the hypomethylating agent decitabine (DEC; 5-aza-2’-deoxycytidine) in preclinical models of FLT-ITD AML. Decitabine, a drug originally indicated for myelodysplastic syndrome, is approved in Europe for the treatment of adult patients (≥65 years of age) with newly diagnosed or secondary AML. Methods: For the in vitro growth assays, cells were pre-treated with decitabine for 0-3 days prior to the addition of PLX3397. Following a 3-day incubation, cell viability was measured based on quantification of the ATP present. The resulting data were analyzed for synergy and combination indices were calculated using CalcuSyn software. Apoptosis was analyzed by measuring caspase 3/7 activity following a 24h incubation with both compounds. For the in vivo study, MV-4-11 cells were grown as subcutaneously implanted xenografts in SCID mice. When tumors reached a size of ~500 mm3 the mice were randomized into equal-sized treatment groups by body weight and tumor size (the day on which this was done was counted as day 0). Decitabine was dosed at 20mg/kg on days 1, 7, 13 and 20 after randomization. PLX3397 was dosed at 20mg/kg on day 2, and continued for 20 days. The combination followed the same dosing schemes as the two single agents. Results: In vitro viability experiments in two AML cell lines (MV-4-11 and MOLM14) using a dose matrix format demonstrated a combination benefit of PLX3397 and decitabine over a range of concentrations. Pre-incubation with decitabine for 3 days prior to the addition of PLX3397 enhanced the synergy observed. PLX3397 alone was more effective than decitabine at inducing apoptosis. Adding both compounds together slightly enhanced the induction of apoptosis, though there did not appear to be an added benefit to pre-treating the cells with decitabine, as was seen in the viability assays. To confirm the synergy observed in vitro we tested the in vivo efficacy of the two agents in the MV-4-11 xenograft model. By day 19, both decitabine and PLX3397 delayed tumor growth, resulting in tumor growth inhibition (TGI) of 89% and 42%, respectively. The combination of decitabine and PLX3397 showed striking antitumor activity, causing tumor regression and reducing tumor volume by 88%. This tumor suppression was maintained for 15 days after the treatment was stopped. Consistent with clinical experience, decitabine treatment was associated with bone marrow toxicity. This toxicity was not worsened by PLX3397. After 2 weeks of recovery bone marrow cellularity rebounded to pre-dosing levels in the combination, with the exception of red blood cell count. Conclusion: Preclinical studies of PLX3397 and decitabine in FLT3-ITD AML cell lines and a xenograft model demonstrated beneficial effects when used in combination. Single agent treatment inhibited MV-4-11 xenograft tumor growth, while the combination resulted in tumor regression. PLX3397 did not further enhance the bone marrow toxicity induced by decitabine. PLX3397 exposures in these preclinical studies are similar to those achieved in AML patients in the on-going single agent clinical trial. Figure 1. Preclinical combination of PLX3397 and decitabine in an MV-4-11 xenograft model. Figure 1. Preclinical combination of PLX3397 and decitabine in an MV-4-11 xenograft model. Disclosures Zhang: Plexxikon: Employment.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Shyh-Horng Lin ◽  
Ming-Han Li ◽  
Kai-An Chuang ◽  
Ni-Hsuan Lin ◽  
Chih-Hsuan Chang ◽  
...  

Cisplatin chemotherapy causes myelosuppression and often limits treatment duration and dose escalation in patients. Novel approaches to circumvent or lessen myelotoxicity may improve clinical outcome and quality of life in these patients. Chlorella sorokiniana (CS) is a freshwater unicellular green alga and exhibits encouraging efficacy in immunomodulation and anticancer in preclinical studies. However, the efficacy of CS on chemoprotection remains unclear. We report here, for the first time, that CS extract (CSE) could protect normal myeloid cells and PBMCs from cisplatin toxicity. Also, cisplatin-induced apoptosis in HL-60 cells was rescued through reservation of mitochondrial function, inhibition of cytochrome c release to cytosol, and suppression of caspase and PARP activation. Intriguingly, cotreatment of CSE attenuated cisplatin-evoked hypocellularity of bone marrow in mice. Furthermore, we observed the enhancement of CSF-GM activity in bone marrow and spleen in mice administered CSE and cisplatin, along with increased CD11b levels in spleen. In conclusion, we uncovered a novel mechanism of CSE on myeloprotection, whereby potentially supports the use of CSE as a chemoprotector against cisplatin-induced bone marrow toxicity. Further clinical investigation of CSE in combination with cisplatin is warranted.


2014 ◽  
Vol 6 ◽  
pp. 241-247 ◽  
Author(s):  
Tetsuro Mazaki ◽  
Takashi Kitajima ◽  
Yasuyuki Shiozaki ◽  
Miwa Sato ◽  
Megumi Mino ◽  
...  

2002 ◽  
Vol 181 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Yvonne R. Freund ◽  
Jack Dabbs ◽  
Moire R. Creek ◽  
Sandra J. Phillips ◽  
Charles A. Tyson ◽  
...  

2019 ◽  
Vol 26 (25) ◽  
pp. 4799-4831 ◽  
Author(s):  
Jiahua Cui ◽  
Xiaoyang Liu ◽  
Larry M.C. Chow

P-glycoprotein, also known as ABCB1 in the ABC transporter family, confers the simultaneous resistance of metastatic cancer cells towards various anticancer drugs with different targets and diverse chemical structures. The exploration of safe and specific inhibitors of this pump has always been the pursuit of scientists for the past four decades. Naturally occurring flavonoids as benzopyrone derivatives were recognized as a class of nontoxic inhibitors of P-gp. The recent advent of synthetic flavonoid dimer FD18, as a potent P-gp modulator in reversing multidrug resistance both in vitro and in vivo, specifically targeted the pseudodimeric structure of the drug transporter and represented a new generation of inhibitors with high transporter binding affinity and low toxicity. This review concerned the recent updates on the structure-activity relationships of flavonoids as P-gp inhibitors, the molecular mechanisms of their action and their ability to overcome P-gp-mediated MDR in preclinical studies. It had crucial implications on the discovery of new drug candidates that modulated the efflux of ABC transporters and also provided some clues for the future development in this promising area.


Sign in / Sign up

Export Citation Format

Share Document