scholarly journals Virial and Energy Dissipation in Measurement of Dynamic Acoustic Forces Using Bimodal-frequency Excitation of Micro-cantilever Array

2021 ◽  
Vol 4 (1) ◽  
pp. 332-340
Author(s):  
Cagri Yilmaz ◽  
Eyup Sabri Topal

Virial and energy dissipation, related to oscillation observable responses, possess complementary information regarding acoustic force measurements. In this paper, we introduce a mathematical framework describing the analytic relationship between oscillation observables and energy quantities at the second eigenmode in the measurement of dynamic acoustic forces. We utilize a bimodal-frequency excitation scheme for actuation of the micro-cantilever array to obtain high-sensitivity frequency bands. Herein, we analyze the virials of acoustic force interaction and the energy dissipation levels on the domain of acoustic force frequency. For our case, we obtain the high-frequency bands of around 200-270 kHz and 440-570 kHz for the force strengths in the range of 4.0-36.0 pN. In addition, results of virials and dissipated power with respect to acoustic force strengths are introduced for low- and high-sensitivity frequency regions. Therefore, the energy quantities can be robustly utilized to determine high-sensitivity frequency windows in the measurement of dynamic acoustic forces.

Author(s):  
Cagri Yilmaz ◽  
Ramazan Sahin ◽  
Eyup Sabri Topal

Abstract We present a detailed analysis on measurement sensitivity of dynamic acoustic forces via numerical simulation of the micro-cantilever responses. The rectangular micro-cantilever is regarded as a point mass in the dynamic model of forced and damped harmonic oscillator. We use single- and bimodal-frequency excitation schemes for actuation of the micro-cantilever in the presence of dynamic acoustic forces. In bimodal-frequency excitation scheme, the micro-cantilever is excited at its first two eigenmode frequencies simultaneously as opposed to single-frequency excitation. First, we numerically obtain micro-cantilever deflections by solving the Equations of Motions (EOMs) constructed for the first two eigenmodes. Then, we determine oscillation amplitude and phase shift as a function of acoustic force strength within different frequency regions. Moreover, we relate amplitude and phase shift to virial and energy dissipation in order to explore the interaction between flexural modes in multifrequency excitation. The simulation results point out that bimodal-frequency excitation improves the measurement sensitivity of dynamic acoustic forces at particular frequencies. Herein, simultaneous application of driving forces enables higher sensitivities of observables and energy quantities as acoustic force frequencies become around the eigenmode frequencies. For our case, we obtain the highest phase shift (approximately 178 degrees) for the acoustic force strength of 100 pN at the frequency of around 307.2 kHz. Therefore, this method can be easily adapted to improve measurement sensitivity of dynamic acoustic forces in a wider frequency window.


Author(s):  
Scott Cogan ◽  
Hui Hui ◽  
Michel Lenczner ◽  
Emmanuel Pillet ◽  
Nicolas Rattier ◽  
...  

2020 ◽  
Vol 91 (8) ◽  
pp. 083201
Author(s):  
Akio Kawasaki ◽  
Alexander Fieguth ◽  
Nadav Priel ◽  
Charles P. Blakemore ◽  
Denzal Martin ◽  
...  

2012 ◽  
Vol 14 ◽  
pp. 337-346 ◽  
Author(s):  
TODD GRAVESON ◽  
CHARLES RACKSON ◽  
WOO-JOONG KIM

We report development of a high-sensitivity torsion balance to measure the thermal Casimir force. Special emphasis is placed on experimental investigations of a possible surface electric force originating from surface patch potentials that have been recently noticed by several experimental groups. By gaining a proper understanding of the actual contribution of the surface electric force in real materials, we aim to undertake precision force measurements to resolve the Casimir force at finite temperature in real metals, as well as in other semiconducting materials, such as graphene.


2011 ◽  
Vol 254 ◽  
pp. 13-16
Author(s):  
Badariah Bais ◽  
Liang Wen Loh ◽  
Rosminazuin A. Rahim ◽  
Majlis Burhanuddin Yeop

Micro-cantilever has been proven as an outstanding platform for extremely sensitive chemical and biological sensors. MEMS cantilever-based sensor is becoming popular due to its high sensitivity, high selectivity, easy to fabricate and can be easily integrated with on-chip electronics circuitry. However, the interface circuit used in this kind of sensors typically has a very low resolution and this limits its capability in sensing the small signal generated by the micro-cantilever. One solution is by incorporating stress concentration regions (SCR) on the micro-cantilever which were found to improve the sensitivity of the sensor. This project will focus on optimizing the sensitivity of the micro-cantilever by modeling the micro-cantilever with the SCR technique. The model is then be verified by numerical simulations.


2008 ◽  
Vol 108 (6) ◽  
pp. 579-588 ◽  
Author(s):  
Fengliang Dong ◽  
Qingchuan Zhang ◽  
Dapeng Chen ◽  
Zhengyu Miao ◽  
Zhiming Xiong ◽  
...  

Author(s):  
Roland H. Grabner ◽  
Clemens Brunner ◽  
Valerie Lorenz ◽  
Stephan E. Vogel ◽  
Bert De Smedt

ABSTRACTThere is broad consensus that adults solve single-digit multiplication problems almost exclusively by fact retrieval (i.e., retrieval of the solution from an arithmetic fact network). In contrast, there has been a long-standing debate on the cognitive processes involved in solving single-digit addition problems. This debate has evolved around two theoretical accounts. The fact-retrieval account postulates that these are solved through fact retrieval, just like multiplications, whereas the compacted-procedure account proposes that solving very small additions (i.e., problems with operands between 1 and 4) involves highly automatized and unconscious compacted procedures. In the present electroencephalography (EEG) study, we put these two accounts to the test by comparing neurophysiological correlates of solving very small additions and multiplications. A sample of 40 adults worked on an arithmetic production task involving all (non-tie) single-digit additions and multiplications. Afterwards, participants completed trial-by-trial strategy self-reports. In our EEG analyses, we focused on induced activity (event-related synchronization/desynchronization, ERS/ERD) in three frequency bands (theta, lower alpha, upper alpha). Across all frequency bands, we found higher evidential strength for similar rather than different neurophysiological processes accompanying the solution of very small addition and multiplication problems. This was also true when n + 1 and n × 1 problems were excluded from the analyses. In two additional analyses, we showed that ERS/ERD can differentiate between self-reported problem-solving strategies (retrieval vs. procedure) and even between n + 1 and n + m problems in very small additions, demonstrating its high sensitivity to cognitive processes in arithmetic. The present findings clearly support the fact-retrieval account, suggesting that both very small additions and multiplications are solved through fact retrieval.HIGHLIGHTSNeurophysiological test of fact retrieval and compacted procedures accountInduced EEG data are sensitive to cognitive processes in arithmetic problem solvingBoth very small additions and multiplications are solved through fact retrieval


2007 ◽  
Vol 56 (5) ◽  
pp. 2529
Author(s):  
Xiong Zhi_Ming ◽  
Zhang Qing_Chuan ◽  
Chen Da_Peng ◽  
Wu Xiao_Ping ◽  
Guo Zhe_Ying ◽  
...  

2007 ◽  
Vol 24 (12) ◽  
pp. 3362-3364 ◽  
Author(s):  
Dong Feng-Liang ◽  
Zhang Qing-Chuan ◽  
Chen Da-Peng ◽  
Miao Zheng-Yu ◽  
Xiong Zhi-Ming ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document