scholarly journals Linking ileal digestible phosphorus and bone mineralization in broiler chickens fed diets supplemented with phytase and highly soluble calcium

2013 ◽  
Vol 92 (8) ◽  
pp. 2109-2117 ◽  
Author(s):  
O. Adeola ◽  
C.L. Walk
Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1084
Author(s):  
Jared Ruff ◽  
Guillermo Tellez ◽  
Aaron J. Forga ◽  
Roberto Señas-Cuesta ◽  
Christine N. Vuong ◽  
...  

The objective of the present research was to assess the dietary supplementation of three formulations of essential oils (EO) in chickens under heat stress (HS). Day-of-hatch Cobb 500 chicks (n = 500) were randomly distributed into four groups: 1. HS control + control diets; 2. HS + control diets supplemented with 37 ppm EO of Lippia origanoides (LO); 3. HS + control diets supplemented with 45 ppm LO + 45 ppm EO of Rosmarinus officinalis (RO) + 300 ppm red beetroot; 4. HS + 45 ppm LO + 45 ppm RO + 300 ppm natural betaine. Chickens that received the EO showed significant (p < 0.05) improvement on BW, BWG, FI, and FCR compared to control HS chickens. Average body core temperature in group 3 and group 4 was significantly (p < 0.05) reduced compared with the HS control group and group 2. Experimental groups showed a significant reduction in FITC-d at 42 days, a significant increase in SOD at both days but a significant reduction of IFN-γ and IgA compared with HS control (p < 0.05). Bone mineralization was significantly improved by EO treatments (p < 0.05). Together these data suggest that supplemental dietary EO may reduce the harmful effects of HS.


2019 ◽  
Vol 98 (11) ◽  
pp. 5215-5225 ◽  
Author(s):  
Estefania Sanchez-Rodriguez ◽  
Cristina Benavides-Reyes ◽  
Cibele Torres ◽  
Nazaret Dominguez-Gasca ◽  
Ana I Garcia-Ruiz ◽  
...  

2012 ◽  
Vol 91 (9) ◽  
pp. 2255-2263 ◽  
Author(s):  
C.L. Walk ◽  
E.K. Addo-Chidie ◽  
M.R. Bedford ◽  
O. Adeola

2016 ◽  
Vol 40 (3) ◽  
pp. 170
Author(s):  
Eny Sholikhatin ◽  
Ferry Poernama ◽  
Nanung Danar Dono ◽  
Zuprizal .

The aim of this study was to determine the calcium requirements of broiler chickens in starter phase with the addition of phytase enzyme. This experiment used 1,200 broiler chickens (mixed sex) for 21 days rearing period in a closed house. The basal diets was corn and soybean meal which contained 0.097% Ca and 0.123% P-av. The treatments consisted of 6 diets treatment: P1 (basal diet with the addition of 0.42% non-phytate phosphorus (NPP), and then P2 to P6 were basal diet with the addition of 0.22% NPP and 1,000 FTU/kg phytase and the addition of calcium (Ca) at different levels: 0.82% (P2); 0.74% (P3); 0.66% (P4); 0.58% (P5) and 0.50% (P6). The growth performance, feed efficiency, and bone mineralization parameters were studied using Oneway ANOVA in a Completely Randomized Design. Duncan's new Multiple Ranges Test was used to separate means with significant differences. Results showed that 0.90% Ca supplementation without phytase and the reduction levels of Ca from 0.82% to 0.50% increased the amount of feed consumed by birds in all growth phases (P<0.05). The addition of phytase had beneficial effects on increasing body weight (P<0.05) and average of body weight gain (P<0.05), and decreased the value of FCR in 11 - 21 days and 1 - 21 days. The addition of phytase increased protein and energy consumption, followed by increased in the value of PER and  EER (P<0.05). When phytase was added in the diets, reduction levels of Ca in the diets up to 0.50% did not give any adverse effect on the tibia bone ash. It can be concluded that feeding with phytase can sustain growth performance, feed efficiency, and bone mineralization.


2020 ◽  
Author(s):  
Hossein Ali Ghasemi ◽  
Iman Hajkhodadadi ◽  
Maryam Hafizi ◽  
Kamran Taherpour ◽  
Mohammad Hassan Nazaran

Abstract Background: Compared to the corresponding source of inorganic trace minerals (TM), chelated supplements are characterized by better physical heterogeneity and chemical stability and appear to be better absorbed in the gut due to possibly decreased interaction with other feed components. This study was designed in broiler chickens to determine the effects of replacing inorganic trace minerals (TM) with an advanced chelate technology based supplement (Bonzachicken) on growth performance, mineral digestibility, tibia bone quality, and antioxidant status. A total of 625 male 1-d-old broiler chickens were allocated to 25 pens and assigned to 5 dietary treatments in a completely randomized design. Chelated TM (CTM) supplement was compared at 3 levels to no TM (NTM) or inorganic TM. A corn–soy-based control diet was supplemented with inorganic TM at the commercially recommended levels (ITM), i.e., iron, zinc, manganese, copper, selenium, iodine, and chromium at 80, 92, 100, 16, 0.3, 1.2, and 0.1 mg/kg, respectively, and varying concentration of CTM, i.e., match to 25, 50, and 100 % of the ITM (diets CTM25, CTM50, and CTM100, respectively). Results: All diets, except diet CTM25, increased average daily gain (ADG), European performance index (EPI), and serum total antioxidant capacity compared to the NTM diet (P < 0.05). Broilers fed the CTM100 diet had lowest overall FCR and highest BWG, EPI, tibia ash, zinc, and manganese contents (P < 0.05). The tibia phosphorus content and apparent ileal digestibilities of phosphorus, zinc, and manganese were lower in the ITM group compared with the CTM50 and CTM100 groups (P < 0.05). Broiler chickens fed any of the diets exhibited higher serum glutathione peroxidase and superoxide dismutase activities and lower malondialdehyde level than those fed the NTM diet, where the best values were found for CTM100 treatment (P < 0.05). Conclusions: These results indicate that while CTM supplementation to 25 and 50% of the commercially recommended levels could support growth performance, a totally replacing ITM by equivalent levels of CTM could also improve growth performance, bone mineralization and antioxidant status of broiler chickens under the conditions of this study.


Sign in / Sign up

Export Citation Format

Share Document