scholarly journals Study on Low Carbon Energy Supply to the District Heating and Cooling Plants and Buildings with a Waste Heat Pipeline in Yokohama City

Author(s):  
Toru Ichikawa ◽  
Ryota Kuzuki ◽  
Satoshi Yoshida ◽  
Satoru Sadohara
2020 ◽  
Vol 10 (16) ◽  
pp. 5543
Author(s):  
Yi Zhang ◽  
He Qi ◽  
Yu Zhou ◽  
Zhonghua Zhang ◽  
Xi Wang

To meet long-term climate change targets, the way that heating and cooling are generated and distributed has to be changed to achieve a supply of affordable, secure and low-carbon energy for all buildings and infrastructures. Among the possible renewable sources of energy, ground source heat pump (GSHP) systems can be an effective low-carbon solution that is compatible with district heating and cooling in urban areas. There are no location restrictions for this technology, and underground energy sources are stable for long-term use. According to a previous study, buildings in urban areas have demonstrated significant spatial heterogeneity in terms of their capacity to demand (C/D) ratio under the application of GSHP due to variations in heating demand and available space. If a spatial sharing strategy can be developed to allow the surplus geothermal capacity to be shared with neighbors, the heating and cooling demands of a greater number of buildings in an area can be satisfied, thus achieving a city with lower carbon emissions. In this study, a GSHP district system model was developed with a specific embedding sharing strategy for the application of GSHP. Two sharing strategies were proposed in this study: (i) Strategy 1 involved individual systems with borehole sharing, and (ii) Strategy 2 was a central district system. Three districts in London were selected to compare the performance of the developed models on the C/D ratio, required borehole number and carbon emissions. According to the comparison analysis, both strategies were able to enhance the GSHP application capacity and increase the savings of carbon emissions. However, the improvement levels were shown to be different. A greater number of building types and a higher variety in building types with larger differentiation in heating and cooling demands can contribute to a better district sharing performance. In addition, it was found that these two sharing strategies were applicable to different kinds of districts.


2019 ◽  
Vol 9 (16) ◽  
pp. 3332 ◽  
Author(s):  
Henrique Lagoeiro ◽  
Akos Revesz ◽  
Gareth Davies ◽  
Graeme Maidment ◽  
Daniel Curry ◽  
...  

Cities demand vast amounts of energy for their everyday operation, resulting in significant degradation of energy in the form of heat in the urban environment. This leads to high cooling requirements in cities, while also presenting the opportunity to reuse such waste heat in order to provide low-carbon heating for buildings and processes. Among the many potential energy sources that could be exploited in urban areas, underground railway tunnels are particularly attractive, as the operation of the trains produce considerable amounts of heat throughout the year. This paper reviews how secondary energy sources in urban areas can be integrated into heating and cooling networks, with emphasis on underground rail tunnels. This involves investigating potential urban waste heat sources and the existing state-of-the-art technologies that could be applied to efficiently recover this secondary energy, as well as analyzing how district heating and cooling networks have been a key mechanism to allow for a smooth transition from current fossil fuel based to future low-carbon energy sources.


2013 ◽  
pp. 5-9
Author(s):  
Ilona Barta-Juhász

The biogas sector has never before aroused so much attention as it does today. Combined heat and power (CHP) reliable and cost-effective technologies that are already making an important contribution to meeting global heat and electricity demand. Due to enhanced energy supply efficiency and utilisation of waste heat renewable energy resources, CHP, particularly together with district heating and cooling (DHC), is an important part of national and regional Green House Gas (GHG) emission reduction strategies. During my work I am going to use the basic data of a certain biogas plant than I assemble one model from that. Against the CHP technology I am going to plan a biogas cleaning-equipment. During my research it revealed, that in the case of a 1 MW output power plant it is not worthy to deal with biogas cleaning between national conditions. Investigating the quantity of heat recovery in the CHP technology it is obvious, that the net income at 1 m3 biogas is at least 72 times more than the cleaning technology (heat recovery is 0%).


2020 ◽  
Vol 22 (6) ◽  
pp. 1339-1357 ◽  
Author(s):  
Maurizio Santin ◽  
Damiana Chinese ◽  
Alessandra De Angelis ◽  
Markus Biberacher

Energy ◽  
2017 ◽  
Vol 120 ◽  
pp. 397-416 ◽  
Author(s):  
Jesús Lizana ◽  
Carlos Ortiz ◽  
Víctor M. Soltero ◽  
Ricardo Chacartegui

2013 ◽  
Vol 40 ◽  
pp. 212-221 ◽  
Author(s):  
Natalie Nakaten ◽  
Philipp Kötting ◽  
Rafig Azzam ◽  
Thomas Kempka

Energy Policy ◽  
2019 ◽  
Vol 128 ◽  
pp. 830-837 ◽  
Author(s):  
H.R. Bohlmann ◽  
J.M. Horridge ◽  
R. Inglesi-Lotz ◽  
E.L. Roos ◽  
L. Stander

Sign in / Sign up

Export Citation Format

Share Document