scholarly journals Nutrient status, hydrogen peroxide content and peroxidase activity of arbuscular mycorrhizal plants of Melilotus albus grown in diesel-contaminated substrate

2021 ◽  
Vol 51 ◽  
pp. e1298
Author(s):  
Herminia Alejandra Hernández-Ortega ◽  
Ronald Ferrera-Cerrato ◽  
Humberto Antonio López-Delgado ◽  
Juan Carlos Sánchez-Rangel ◽  
Alejandro Alarcón

Background: Petroleum hydrocarbons affect plant growth, but little is known about physiological responses of mycorrhizal plants facing diesel contamination. Objective: To evaluate the effects of arbuscular mycorrhizal fungi (AMF) on the nutritional status, peroxidase activity (POX), and hydrogen peroxide content (H2O2) in leaves of Melilotus albus planted under diesel-contaminated sand (7500 mg kg-1). Methods: A 2x2 factorial experiment was set in a completely randomized design, under greenhouse conditions for 35 days. Seedlings were pre-inoculated with AMF and transplanted to sand with or without diesel, including non-AMF plants. Results and conclusions: Diesel contamination impaired plant growth; AMF plants had similar growth than non-AMF plants at diesel-contamination, but low nutrient content. Protein content decreased due to diesel in non-AMF plants, but this content was low in AMF plants regardless diesel contamination. Diesel increased POX; whereas AMF plants with or without diesel had higher POX than non-AMF plants. The H2O2 content in AMF plants with or without diesel was low than non-AMF plants. Diesel contamination diminished AMF-colonization, but AMF dissipate more diesel hydrocarbons (>40%). Overall, AMF alleviated the toxic effects of diesel on plants.

Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


2021 ◽  
Vol 26 (02) ◽  
pp. 201-208
Author(s):  
Anass Kchikich

Nitrogen (N), one of the most important elements for plant growth, is needed by plants in large quantities. However, this nutrient has limited supply in the soil. Arbuscular mycorrhizal fungi (AMF) are known for their ability to form symbiotic association with plants and transfer the mineral nutrients to the host plants. To validate this hypothesis on sorghum plants, three ecotypes of this cereal (3p4, 3p9 and 4p11) were cultivated with and without AMF under low nitrogen concentration (0.5 mM NH4+). Growth parameters were determined and key enzymes responsible for nitrogen and carbon metabolisms such as glutamine synthetase (GS), glutamate dehydrogenase (GDH), phosphoenolpyruvate carboxylase (PEPC), isocitrate dehydrogenase (ICDH), malate dehydrogenase (MDH) and asparate aminotransferase (AAT) were measured. For the three sorghum ecotypes, mycorrhizal plants showed a higher plant growth compared to the control plants. The biochemical parameters revealed a significant increase in the nitrogen assimilatory enzymes; GS and GDH in the leaves and roots of mycorrhizal plants. Furthermore, mycorrhizal fungi also appear to have a significant effect on carbon assimilatory enzymes. These enzymes are known to have a cardinal role in the provision of carbon skeletons essential for the assimilation of ammonium and thus, amino acids synthesis. Our study indicates clearly that AMF can be an efficient way to optimize nitrogen uptake and/or assimilation by plants and thus improve the crop yields with lower amount of nitrogen fertilizers. © 2021 Friends Science Publishers


2018 ◽  
Vol 46 (2) ◽  
pp. 365-370 ◽  
Author(s):  
Li TIAN ◽  
Yan LI ◽  
Qiang-Sheng WU

Arbuscular mycorrhizas (AMs) need the carbohydrates from host plants for its growth, whereas it is not clear whether exogenous carbon affects mycorrhizal roles. A two-chambered rootbox was divided into root + hyphae chamber and hyphae chamber (free of roots) by 37-μm nylon mesh, in which trifoliate orange (Poncirus trifoliata) seedlings and Funneliformis mosseae were applied into root + hyphae chamber, and exogenous 40 mmol/L fructose, glucose and sucrose was applied to hyphae chamber. Application of exogenous sugars dramatically elevated root mycorrhizal colonization. Sole arbuscular mycorrhizal fungi (AMF) inoculation significantly promoted plant growth and root morphology than non-AMF treatment. Mycorrhiza-improved plant growth and root modification could be enlarged by exogenous carbon, especially fructose. Exogenous carbon markedly increased root fructose, glucose and sucrose accumulation in mycorrhizal plants, especially sucrose. Exogenous fructose significantly reduced leaf and root sucrose synthase (SS) activity in synthesis direction and increased them in cleavage direction in AMF seedlings. Exogenous glucose and sucrose heavily elevated root SS activity of mycorrhizal seedlings in synthesis and cleavage direction and reduced leaf SS activity in synthesis direction. Leaf acid invertase (AI) and neutral invertase (NI) activities of mycorrhizal seedlings were decreased by exogenous carbon, except sucrose in NI. Exogenous fructose significantly increased root AI and NI activity in mycorrhizal plants. These results implied that mycorrhizal inoculation represented positive effects on plant growth, root morphology, and sucrose metabolism of trifoliate orange, which could be magnified further by exogenous carbon, especially fructose.


2012 ◽  
Vol 95 ◽  
pp. S319-S324 ◽  
Author(s):  
Herminia Alejandra Hernández-Ortega ◽  
Alejandro Alarcón ◽  
Ronald Ferrera-Cerrato ◽  
Hilda Araceli Zavaleta-Mancera ◽  
Humberto Antonio López-Delgado ◽  
...  

2015 ◽  
Vol 42 (12) ◽  
pp. 1158 ◽  
Author(s):  
Jun Ma ◽  
Martina Janoušková ◽  
Yansu Li ◽  
Xianchang Yu ◽  
Yan Yan ◽  
...  

Symbiosis with root-associated arbuscular mycorrhizal fungi (AMF) can improve plant phosphorus (P) uptake and alleviate environmental stresses. It could be also an effective mean to promote plant performance under low temperatures. The combined effects of arbuscular mycorrhiza and low temperature (15°C/10°C day/night) on cucumber seedlings were investigated in the present study. Root colonisation by AMF, succinate dehydrogenase and alkaline phosphatase activity in the intraradical fungal structures, plant growth parameters, and expression profiles of four cucumber phosphate (Pi) transporters, the fungal Pi transporter GintPT and alkaline phosphatase GintALP were determined. Cold stress reduced plant growth and mycorrhizal colonisation. Inoculation improved cucumber growth under ambient temperatures, whereas under cold stress only root biomass was significantly increased by inoculation. AMF supplied P to the host plant under ambient temperatures and cold stress, as evidenced by the higher P content of mycorrhizal plants compared with non-mycorrhizal plants. Thus, the cold-stressed cucumber seedlings still benefited from mycorrhiza, although the benefit was less than that under ambient temperatures. In accordance with this, a cucumber Pi transporter gene belonging to the Pht1 gene family was strongly induced by mycorrhiza at ambient temperature and to a lesser extent under cold stress. The other three Pi transporters tested from different families were most highly expressed in cold-stressed mycorrhizal plants, suggesting a complex interactive effect of mycorrhiza and cold stress on internal P cycling in cucumber plants.


2011 ◽  
Vol 38 (3) ◽  
pp. 219 ◽  
Author(s):  
Hamid Reza Asghari ◽  
Timothy Richard Cavagnaro

Arbuscular mycorrhizal fungi (AMF) can increase plant growth and nutrition. However, their capacity to reduce the leaching of nutrients through the soil profile is less well understood. Here we present results of an experiment in which the effects of forming arbuscular mycorrhizas (AM) on plant growth and nutrition, nutrient depletion from soil, and nutrient leaching, were investigated in microcosms containing the grass Phalaris aquatica L. Mycorrhizal and non-mycorrhizal plants were grown in a mixture of riparian soil and sand under glasshouse conditions. The formation of AM by P. aquatica significantly increased plant growth and nutrient uptake. Lower levels of NO3–, NH4+ and plant available P in both soil and leachate were observed in columns containing mycorrhizal root systems. These differences in nutrient interception were proportionally greater than the increase in root biomass of the mycorrhizal plants, compared with their non-mycorrhizal counterparts. Taken together, these data indicate that mycorrhizal root systems have an important, but previously little considered, role to play reducing the net loss of nutrients via leaching.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1531
Author(s):  
Narcisa Urgiles-Gómez ◽  
María Eugenia Avila-Salem ◽  
Paúl Loján ◽  
Max Encalada ◽  
Leslye Hurtado ◽  
...  

Coffee is an important, high-value crop because its roasted beans are used to produce popular beverages that are consumed worldwide. Coffee plantations exist in over 70 countries and constitute the main economic activity of approximately 125 million people. Currently, there is global concern regarding the excessive use of agrochemicals and pesticides in agriculture, including coffee crops. This situation has motivated researchers, administrators, and farmers to seek ecologically friendly alternatives to decrease the use of synthetic fertilizers and pesticides. In the last decades, multiple studies of the rhizosphere, at the chemical, physical and biological levels, have improved our understanding of the importance of beneficial microorganisms to plant health and growth. This review aims to summarize the state of the use of plant growth-promoting microorganisms (PGPM) in coffee production, where the most extensively studied microorganisms are beneficial plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). This review also contains information on PGPM, in regard to plantations at different latitudes, isolation techniques, mass multiplication, formulation methods, and the application of PGPM in nurseries, monoculture, and coffee agroforestry systems. Finally, this review focuses on relevant research performed during the last decade that can help us improve sustainable coffee production.


Sign in / Sign up

Export Citation Format

Share Document