scholarly journals Hybridization Slows Rate of Evolution in Crop-Wild Compared to Wild Populations of Weedy Raphanus Across a Moisture Gradient

2020 ◽  
Vol 2 ◽  
Author(s):  
Kruti Shukla ◽  
Serena Sbrizzi ◽  
Andrew E. Laursen ◽  
Jessica Benavides ◽  
Lesley G. Campbell

Hybrid offspring of crops and their wild relatives commonly possess non-adaptive phenotypes and diminished fitness. Regularly, diminished success in early-generation hybrid populations is interpreted to suggest reduced biosafety risk regarding the unintended escape of novel traits from crop populations. Yet hybrid populations have been known to evolve to recover fitness relative to wild progenitors and can do so more rapidly than wild populations, although rates of evolution (for both hybrid populations and their wild progenitors) are sensitive to environmental context. In this research, we asked whether hybrid populations evolved more rapidly than wild populations in the context of soil moisture. We estimated evolutionary rates for 40 Raphanus populations that varied in their history of hybridization and environmental context (imposed by an experimental moisture cline) in two common gardens. After five generations of growing wild and crop-wild hybrid populations across a soil-moisture gradient, hybrid populations exhibited increased seedling emergence frequencies (~6% more), earlier emergence (~1 day), later flowering (~3 days), and larger body size (15–35%)—traits correlated with fitness—relative to wild populations. Hybrid populations, however, exhibited slower evolutionary rates than wild populations. Moreover, the rate of evolution in hybrid populations was consistent across evolutionary watering environments, but varied across watering environments in wild populations. These consistent evolutionary rates exhibited in hybrid populations suggests the evolution of robust traits that perform equally across soil moisture environments—a survival strategy characterized as “jack of all trades.” Although, diverse integrated weed management practices must be applied to wild and hybrid genotypes to diversify selection on these populations, evaluating the evolutionary rates of weeds in diverse environments will support the development of multi-faceted weed control strategies and effective integrated weed management policies.

2021 ◽  
Vol 6 (1) ◽  
pp. 124-134
Author(s):  
Emmanuel Oyamedan Imoloame ◽  
Ibrahim Folorunsho Ayanda ◽  
Olayinka Jelili Yusuf

Abstract A survey was conducted in the Kwara State of Nigeria to study the integrated weed management (IWM) practices by farmers. This was in view of the poor weed management practices adopted by farmers, which is a major factor responsible for low yields of many arable crops in Kwara State. A multi-stage sampling technique was used to select a sample size of 480 respondents, and a structured interview schedule was used to elicit information from them. Data obtained were analyzed using descriptive statistics. Factor analysis was also carried out to examine the perception of farmers’ benefits of IWM. Results showed that the majority of farmers (29.4%) were youths, married (89.1%), and involved in medium-scale farming (47.2%). Furthermore, 50.8% of the farmers had primary or secondary education. Although farmers use different weed control methods, more than half of them (54.7%) use herbicides. Most farmers (92.6%) are engaged in the use of IWM, However, 73.5% of them use a combination of herbicides and hoe weeding. Although not properly practiced, farmers perceived IWM as having socio-environmental (29.229%) and techno-efficacious (23.495%) benefits over either hoe weeding or herbicides used alone. The findings suggest a need to train farmers on all aspects of IWM to achieve self-sufficiency in food production in Kwara State.


2015 ◽  
Vol 45 (9) ◽  
pp. 1557-1563 ◽  
Author(s):  
Guilherme Vestena Cassol ◽  
Luis Antonio de Avila ◽  
Carla Rejane Zemolin ◽  
Andrey Piveta ◽  
Dirceu Agostinetto ◽  
...  

<p>Dose-response experiments were carried out to evaluate the sensitivity of imidazolinone-resistant red rice to nonselective herbicides currently used in rice-soybean rotation in Rio Grande do Sul. Two red rice biotypes previously identified as resistant and susceptible to the imidazolinone herbicides were treated with imazapic plus imazapic, glyphosate and glufosinate under nine herbicide rates. A non-linear log-logistic analysis was used to estimate the herbicide rate that provided 50% red rice control and dry weight reduction (GR<sub>50</sub>). Imidazolinone-resistant red rice exhibited greater GR<sub>50</sub> values than imidazolinone-susceptible biotype for imazapyr plus imazapic. In contrast, both imidazolinone-resistant and susceptible red rice showed similar GR<sub>50</sub>values for glyphosate and glufosinate. These results indicate that glyphosate and glufosinate effectively control imidazolinone-resistant red rice at similar herbicide rates used to control imidazolinone-susceptible; however, integrated weed management practices must be adopted in rice-soybean rotation to delay resistance evolution of red rice populations to glyphosate and glufosinate</p>


2007 ◽  
Vol 26 (8) ◽  
pp. 1135-1139 ◽  
Author(s):  
Khalid Mahmood Khokhar ◽  
Tariq Mehmood ◽  
Muhammad Shakeel

2004 ◽  
Vol 18 (4) ◽  
pp. 1006-1012 ◽  
Author(s):  
K. Neil Harker ◽  
George W. Clayton ◽  
John T. O'Donovan ◽  
Robert E. Blackshaw ◽  
F. Craig Stevenson

Herbicide-resistant canola dominates the canola market in Canada. A multiyear field experiment was conducted at three locations to investigate the effect of time of weed removal (two-, four-, or six-leaf canola) and herbicide rate (50 or 100% recommended) in three herbicide-resistant canola systems. Weeds were controlled in glufosinate-resistant canola (GLU) with glufosinate, in glyphosate-resistant canola (GLY) with glyphosate, and in imidazolinone-resistant canola (IMI) with a 50:50 mixture of imazamox and imazethapyr. Canola yields were similar among the three canola cultivar–herbicide systems. Yields were not influenced by 50 vs. 100% herbicide rates. Timing of weed removal had the greatest effect on canola yield, with weed removal at the four-leaf stage giving the highest yields in most cases. Percent dockage was often greater for GLU and IMI than for GLY. In comparison with the other treatments, dockage levels doubled for GLU after application at 50% herbicide rates. The consistency of monocot weed control was usually greater for GLY than for GLU or IMI systems. However, weed biomass data revealed no differences in dicot weed control consistency between IMI and GLY systems. Greater dockage and weed biomass variability after weed removal at the six-leaf stage or after low herbicide rates suggests higher weed seed production, which could constrain the adoption of integrated weed management practices in subsequent years.


1996 ◽  
Vol 76 (3) ◽  
pp. 537-544 ◽  
Author(s):  
F. C. Stevenson ◽  
A. T. Wright

Seeding rate and row spacing are management practices that affect flax seed yield. Two experiments were conducted from 1988 to 1990 to determine the influence of flax seeding rates (300, 600, and 900 seeds m−2) and row spacings (9, 18, and 27 cm). One was a flax-weed interference study (three sites) and the other was a weed-free study (13 sites). In the presence of weeds, increasing seeding rate from 300 to 900 seeds m−2 improved flax seed yield by 180 kg ha−1, and reduced broadleaf weed yields by 300 kg ha−1 and grassy weed yields by 180 kg ha−1. In weed-free conditions, seed yield was not affected by seeding rate. Row spacing did not affect flax yield and had minor effects on weed yields when weeds were not controlled. When weeds were controlled, seed yield in the 9-cm row spacing was 9% (15% in the flax-weed interference study) greater than in the two wider row spacings. Seeding rate and row spacing independently influenced flax yield, and their effect was consistent among sites with weeds present, but was not consistent when weeds were controlled. Our results showed that flax seeding rate was an important component of integrated weed management. Key words: Flax, seeding rate, row spacing, weed interference


Agriculture ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 138 ◽  
Author(s):  
Hilary Sandler

Integrated weed management (IWM) has been part of cranberry cultivation since its inception in the early 19th century. Proper site and cultivar selection, good drainage, rapid vine establishment, and hand weeding are as important now for successful weed management as when the industry first started. In 1940, Extension publications listed eight herbicides (e.g., petroleum-based products, inorganic salts and sulfates) for weed control. Currently, 18 herbicides representing 11 different modes of action are registered for use on cranberries. Nonchemical methods, such as hand weeding, sanding, flooding, and proper fertilization, remain integral for managing weed populations; new tactics such as flame cultivation have been added to the toolbox. Priority ratings have been developed to aid in weed management planning. Despite many efforts, biological control of weeds remains elusive on the commercial scale. Evaluation of new herbicides, unmanned aerial systems (UAS), image analysis, and precision agriculture technology; investigation of other management practices for weeds and their natural enemies; utilization of computational decision making and Big Data; and determination of the impact of climate change are research areas whose results will translate into new use recommendations for the weed control of cranberry.


Weed Science ◽  
1996 ◽  
Vol 44 (2) ◽  
pp. 409-412 ◽  
Author(s):  
Clyde L. Elmore

Integrated Weed Management (IWM), a long time practice by farmers has become more commonly discussed as a total weed management system. Whether an off shoot of Integrated Pest Management (IPM) or a further recognition of integrating weed control measures within the cropping and farming system, it has become more widespread. IWM is being practiced using many of the same components, from croplands to forests and rangeland. A weed management hierarchy has been developed by degree of diversity of management practices. IWM researchers and educators should invite other pest management specialists to join us in striving for Integrated Crop Management systems.


Weed Science ◽  
2007 ◽  
Vol 55 (5) ◽  
pp. 508-516 ◽  
Author(s):  
Vince M. Davis ◽  
Kevin D. Gibson ◽  
Thomas T. Bauman ◽  
Stephen C. Weller ◽  
William G. Johnson

Horseweed is an increasingly problematic weed in soybean because of the frequent occurrence of glyphosate-resistant (GR) biotypes. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual nonglyphosate herbicides, and preplant herbicide application timing on the population dynamics of GR horseweed and crop yield. A field study was conducted at a site with a moderate infestation of GR horseweed (approximately 1 plant m−2) with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying horseweed plant density, seedbank density, and crop yield. Crop rotation did not influence in-field horseweed or seedbank densities at any data census timing. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season long horseweed densities and protecting crop yield because horseweed in this region behaves primarily as a summer annual weed. Horseweed seedbank densities declined rapidly in the soil by an average of 76% for all systems over the first 10 mo before new seed rain. Despite rapid decline in total seedbank density, seed for GR biotypes remained in the seedbank for at least 2 yr. Therefore, to reduce the presence of GR horseweed biotypes in a local no-till weed flora, integrated weed management (IWM) systems should be developed to reduce total horseweed populations based on the knowledge that seed for GR biotypes are as persistent in the seed bank as glyphosate-sensitive (GS) biotypes.


Sign in / Sign up

Export Citation Format

Share Document