scholarly journals Agent-Based Models Predict Emergent Behavior of Heterogeneous Cell Populations in Dynamic Microenvironments

Author(s):  
Jessica S. Yu ◽  
Neda Bagheri
Author(s):  
Marcia R. Friesen ◽  
Richard Gordon ◽  
Robert D. McLeod

In this chapter, the authors examine manifestations of emergence or apparent emergence in agent based social modeling and simulation, and discuss the inherent challenges in building real world models and in defining, recognizing and validating emergence within these systems. The discussion is grounded in examples of research on emergence by others, with extensions from within our research group. The works cited and built upon are explicitly chosen as representative samples of agent-based models that involve social systems, where observation of emergent behavior is a sought-after outcome. The concept of the distinctiveness of social from abiotic emergence in terms of the use of global parameters by agents is introduced.


AIP Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 035133
Author(s):  
Miles Medina ◽  
Ray Huffaker ◽  
Rafael Muñoz-Carpena ◽  
Gregory Kiker

2019 ◽  
Vol 9 (15) ◽  
pp. 2974 ◽  
Author(s):  
Aman Garg ◽  
Samson Yuen ◽  
Nuttiiya Seekhao ◽  
Grace Yu ◽  
Jeannie Karwowski ◽  
...  

Agent based models (ABM) were developed to numerically simulate the biological response to surgical vocal fold injury and repair at the physiological level. This study aimed to improve the representation of existing ABM through a combination of empirical and computational experiments. Empirical data of vocal fold cell populations including neutrophils, macrophages and fibroblasts were obtained using flow cytometry up to four weeks following surgical injury. Random Forests were used as a sensitivity analysis method to identify model parameters that were most influential to ABM outputs. Statistical Parameter Optimization Tool for Python was used to calibrate those parameter values to match the ABM-simulation data with the corresponding empirical data from Day 1 to Day 5 following surgery. Model performance was evaluated by verifying if the empirical data fell within the 95% confidence intervals of ABM outputs of cell quantities at Day 7, Week 2 and Week 4. For Day 7, all empirical data were within the ABM output ranges. The trends of ABM-simulated cell populations were also qualitatively comparable to those of the empirical data beyond Day 7. Exact values, however, fell outside of the 95% statistical confidence intervals. Parameters related to fibroblast proliferation were indicative to the ABM-simulation of fibroblast dynamics in final stages of wound healing.


Author(s):  
Anna Corti ◽  
Monika Colombo ◽  
Francesco Migliavacca ◽  
Jose Felix Rodriguez Matas ◽  
Stefano Casarin ◽  
...  

The widespread incidence of cardiovascular diseases and associated mortality and morbidity, along with the advent of powerful computational resources, have fostered an extensive research in computational modeling of vascular pathophysiology field and promoted in-silico models as a support for biomedical research. Given the multiscale nature of biological systems, the integration of phenomena at different spatial and temporal scales has emerged to be essential in capturing mechanobiological mechanisms underlying vascular adaptation processes. In this regard, agent-based models have demonstrated to successfully embed the systems biology principles and capture the emergent behavior of cellular systems under different pathophysiological conditions. Furthermore, through their modular structure, agent-based models are suitable to be integrated with continuum-based models within a multiscale framework that can link the molecular pathways to the cell and tissue levels. This can allow improving existing therapies and/or developing new therapeutic strategies. The present review examines the multiscale computational frameworks of vascular adaptation with an emphasis on the integration of agent-based approaches with continuum models to describe vascular pathophysiology in a systems biology perspective. The state-of-the-art highlights the current gaps and limitations in the field, thus shedding light on new areas to be explored that may become the future research focus. The inclusion of molecular intracellular pathways (e.g., genomics or proteomics) within the multiscale agent-based modeling frameworks will certainly provide a great contribution to the promising personalized medicine. Efforts will be also needed to address the challenges encountered for the verification, uncertainty quantification, calibration and validation of these multiscale frameworks.


2021 ◽  
Vol 9 (2) ◽  
pp. 417
Author(s):  
Sherli Koshy-Chenthittayil ◽  
Linda Archambault ◽  
Dhananjai Senthilkumar ◽  
Reinhard Laubenbacher ◽  
Pedro Mendes ◽  
...  

The human microbiome has been a focus of intense study in recent years. Most of the living organisms comprising the microbiome exist in the form of biofilms on mucosal surfaces lining our digestive, respiratory, and genito-urinary tracts. While health-associated microbiota contribute to digestion, provide essential nutrients, and protect us from pathogens, disturbances due to illness or medical interventions contribute to infections, some that can be fatal. Myriad biological processes influence the make-up of the microbiota, for example: growth, division, death, and production of extracellular polymers (EPS), and metabolites. Inter-species interactions include competition, inhibition, and symbiosis. Computational models are becoming widely used to better understand these interactions. Agent-based modeling is a particularly useful computational approach to implement the various complex interactions in microbial communities when appropriately combined with an experimental approach. In these models, each cell is represented as an autonomous agent with its own set of rules, with different rules for each species. In this review, we will discuss innovations in agent-based modeling of biofilms and the microbiota in the past five years from the biological and mathematical perspectives and discuss how agent-based models can be further utilized to enhance our comprehension of the complex world of polymicrobial biofilms and the microbiome.


Sign in / Sign up

Export Citation Format

Share Document