scholarly journals Saccade and Fixation Eye Movements During Walking in People With Mild Traumatic Brain Injury

Author(s):  
Ellen Lirani-Silva ◽  
Samuel Stuart ◽  
Lucy Parrington ◽  
Kody Campbell ◽  
Laurie King

Background: Clinical and laboratory assessment of people with mild traumatic brain injury (mTBI) indicate impairments in eye movements. These tests are typically done in a static, seated position. Recently, the use of mobile eye-tracking systems has been proposed to quantify subtle deficits in eye movements and visual sampling during different tasks. However, the impact of mTBI on eye movements during functional tasks such as walking remains unknown.Objective: Evaluate differences in eye-tracking measures collected during gait between healthy controls (HC) and patients in the sub-acute stages of mTBI recovery and to determine if there are associations between eye-tracking measures and gait speed.Methods: Thirty-seven HC participants and 67individuals with mTBI were instructed to walk back and forth over 10-m, at a comfortable self-selected speed. A single 1-min trial was performed. Eye-tracking measures were recorded using a mobile eye-tracking system (head-mounted infra-red Tobbii Pro Glasses 2, 100 Hz, Tobii Technology Inc. VA, United States). Eye-tracking measures included saccadic (frequency, mean and peak velocity, duration and distance) and fixation measurements (frequency and duration). Gait was assessed using six inertial sensors (both feet, sternum, right wrist, lumbar vertebrae and the forehead) and gait velocity was selected as the primary outcome. General linear model was used to compare the groups and association between gait and eye-tracking outcomes were explored using partial correlations.Results: Individuals with mTBI showed significantly reduced saccade frequency (p = 0.016), duration (p = 0.028) and peak velocity (p = 0.032) compared to the HC group. No significant differences between groups were observed for the saccade distance, fixation measures and gait velocity (p > 0.05). A positive correlation was observed between saccade duration and gait velocity only for participants with mTBI (p = 0.025).Conclusion: Findings suggest impaired saccadic eye movement, but not fixations, during walking in individuals with mTBI. These findings have implications in real-world function including return to sport for athletes and return to duty for military service members. Future research should investigate whether or not saccade outcomes are influenced by the time after the trauma and rehabilitation.

Author(s):  
Fleur Lorton ◽  
Jeanne Simon-Pimmel ◽  
Damien Masson ◽  
Elise Launay ◽  
Christèle Gras-Le Guen ◽  
...  

AbstractObjectivesTo evaluate the impact of implementing a modified Pediatric Emergency Care Applied Research Network (PECARN) rule including the S100B protein assay for managing mild traumatic brain injury (mTBI) in children.MethodsA before-and-after study was conducted in a paediatric emergency department of a French University Hospital from 2013 to 2015. We retrospectively included all consecutive children aged 4 months to 15 years who presented mTBI and were at intermediate risk for clinically important traumatic brain injury (ciTBI). We compared the proportions of CT scans performed and of in-hospital observations before (2013–2014) and after (2014–2015) implementation of a modified PECARN rule including the S100B protein assay.ResultsWe included 1,062 children with mTBI (median age 4.5 years, sex ratio [F/M] 0.73) who were at intermediate risk for ciTBI: 494 (46.5%) during 2013–2014 and 568 (53.5%) during 2014–2015. During 2014–2015, S100B protein was measured in 451 (79.4%) children within 6 h after mTBI. The proportion of CT scans and in-hospital observations significantly decreased between the two periods, from 14.4 to 9.5% (p=0.02) and 73.9–40.5% (p<0.01), respectively. The number of CT scans performed to identify a single ciTBI was reduced by two-thirds, from 18 to 6 CT scans, between 2013–2014 and 2014–2015. All children with ciTBI were identified by the rules.ConclusionsThe implementation of a modified PECARN rule including the S100B protein assay significantly decreased the proportion of CT scans and in-hospital observations for children with mTBI who were at intermediate risk for ciTBI.


2015 ◽  
Vol 8 ◽  
pp. 210-223 ◽  
Author(s):  
Mithun Diwakar ◽  
Deborah L. Harrington ◽  
Jun Maruta ◽  
Jamshid Ghajar ◽  
Fady El-Gabalawy ◽  
...  

2020 ◽  
Author(s):  
R Elisabeth Cornwell ◽  
Jorge I Arango ◽  
C B Eagye ◽  
Candace Hill-Pearson ◽  
Karen Schwab ◽  
...  

ABSTRACT Introduction The prevalence of mild traumatic brain injury (mTBI) is commonly estimated based on indirect metrics such as emergency department visits and self-reporting tools. The study of postconcussive symptoms faces similar challenges because of their unspecific character and indistinct causality. In this article, we compare two nonclinical, epidemiological studies that addressed these two elements and were performed within a relatively narrow period in the state of Colorado. Materials and Methods De-identified datasets were obtained from a random digit-dialed survey study conducted by the Craig Hospital and a study surveying soldiers returning from deployment by Defense and Veteran Traumatic Brain Injury Center. Information pertinent to participants’ demographics, a history of mTBI, and symptom endorsement was extracted and homogenized in order to establish a parallel comparison between the populations of the two studies. Results From the 1,558 (Warrior Strong, 679; Craig Hospital, 879) records selected for analysis, 43% reported a history of at least one mTBI. The prevalence was significantly higher among individuals from the Defense and Veteran Traumatic Brain Injury Center study independent of gender or race. Repetitive injuries were reported by 15% of the total combined cohort and were more prevalent among males. Symptom endorsement was significantly higher in individuals with a positive history of mTBI, but over 80% of those with a negative history of mTBI endorsed at least one of the symptoms interrogated. Significant differences were observed between the military and the civilian populations in terms of the types and frequencies of the symptoms endorsed. Conclusions The prevalence of mTBI and associated symptoms identified in the two study populations is higher than that of previously reported. This suggests that not all individuals sustaining concussion seek medical care and highlights the limitations of using clinical reports to assess such estimates. The lack of appropriate mechanisms to determine symptom presence and causality remains a challenge. However, the differences observed in symptom reporting between cohorts raise questions about the nature of the symptoms, the impact on the quality of life for different individuals, and the effects on military health and force readiness.


2020 ◽  
Vol 2 ◽  
Author(s):  
Samuel Stuart ◽  
Lucy Parrington ◽  
Douglas Martini ◽  
Robert Peterka ◽  
James Chesnutt ◽  
...  

2015 ◽  
Vol 30 (1) ◽  
pp. 21-28 ◽  
Author(s):  
David X. Cifu ◽  
Joanna R. Wares ◽  
Kathy W. Hoke ◽  
Paul A. Wetzel ◽  
George Gitchel ◽  
...  

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 71 ◽  
Author(s):  
Jun Maruta

This correspondence points out a need for clarification concerning the methodology utilized in the study “Eye tracking detects disconjugate eye movements associated with structural traumatic brain injury and concussion”, recently published in Journal of Neurotrauma. The authors of the paper state that binocular eye movements were recorded using a single-camera video-oculography technique and that binocular disconjugate characteristics were analyzed without calibration of eye orientation. It is claimed that a variance-based disconjugacy metric was found to be sensitive to the severity of a concussive brain injury and to the status of recovery after the original injury. However, the reproducibility of the paper’s findings may be challenged simply by the paucity of details in the methodological description. More importantly, from the information supplied or cited in the paper, it is difficult to evaluate the validity of the potentially interesting conclusions of the paper.


2020 ◽  
Author(s):  
Xuan Niu ◽  
Lijun Bai ◽  
Yingxiang Sun ◽  
Yuan Wang ◽  
Guanghui Bai ◽  
...  

Abstract Background:Mild traumatic brain injury (mTBI) is higher prevalence (more than 50%) to develop chronic posttraumatic headache (CPTH) compared with moderate or severe TBI. However, the underlying neural mechanism for CPTH remains unclear. This study aimed to investigate the inflammation level and cortical volume changes in patients with acute PTH (APTH) and further examine their potential in identifying patients who finally developing CPTH at follow-up.Methods:77 mTBI patients initially underwent neuropsychological measurements, 9-plex panel of serum cytokines and MRI scans within 7 days post-injury (T-1) and 54 (70.1%) of patients follow-up at 3-month (T-2). 42 matched healthy controls completed the same protocol at T-1 once. Results:MTBI patients with APTH presented significantly increased GM volume mainly in the right dorsal anterior cingulate cortex (dACC) and dorsal posterior cingulate cortex (dPCC), of which the dPCC volume can predict much worse impact of headache on patients’ lives by HIT-6 (β = 0.389, P = 0.007). Serum levels of C-C motif chemokine ligand 2 (CCL2) were also elevated in these patients, and its effect on the impact of headache on quality of life was partially mediated by the dPCC volume (mean [SE] indirect effect, 0.088 [0.0462], 95% CI, 0.01-0.164). Longitudinal analysis showed that the dACC and dPCC volumes as well as CCL2 levels persistently increased in patients developing CPTH 3 month postinjury. Conclusion:The findings suggested that structural remodelling of DMN brain regions were involved in the progression from acute to chronic PTH following mTBI, which also mediated the effect of inflammation processes on pain modulation.Trial registration: ClinicalTrial.gov ID: NCT02868684; registered 16 August 2016.


Over the past several years, there has been a search for an objective biomarker to detect the presence of mild traumatic brain injury (mTBI)/concussion, especially one of a non-invasive nature. Recent advances and laboratory experimentation involving the abnormal oculomotor system in these individuals has suggested one very strong candidate: convergence peak velocity, which was found to be significantly reduced in all subjects tested. This vergence parameter can be rapidly and easily assessed using automated eye movement recording and analysis systems in a full range of environments, including the sports arena and the military theater, as well as one’s optometric practice, with a very low false positive rate, thus improving the early clinical diagnosis.


Sign in / Sign up

Export Citation Format

Share Document