scholarly journals A Paper-Based IL-6 Test Strip Coupled With a Spectrum-Based Optical Reader for Differentiating Influenza Severity in Children

Author(s):  
Sheng-Wen Lin ◽  
Ching-Fen Shen ◽  
Ching-Chuan Liu ◽  
Chao-Min Cheng

Influenza virus infection is a major worldwide public health problem. Influenza virus infections are associated with a high hospitalization rate in children between the ages of 5 and 14. The predominant reason for poor influenza prognosis is the lack of any effective means for early diagnosis. Early diagnosis of severe illness is critical to improving patient outcome, and could be especially useful in areas with limited medical resources. Accurate, inexpensive, and easy-to-use diagnostic tools could improve early diagnosis and patient outcome, and reduce overall healthcare costs. We developed an interleukin-6 paper-based test strip that used colloidal gold-conjugated antibodies to detect human interleukin-6 protein. These complexes were captured on a paper-based test strip patterned with perpendicular T lines that were pre-coated with anti-human interleukin-6 antibodies. Applied serum samples interacted with these antibodies and presented as colored bands that could be read using a spectrum-based optical reader. The full-spectrum of the reflected light interleukin-6 protein signal could be obtained from the spectral optics module, and the standard could be used to quantitatively analyze interleukin 6 level in serum. We retrospectively evaluated 10 children (23 serum samples) with severe influenza virus infections, 26 children (26 serum samples) with mild influenza virus infections, and 10 healthy children (10 serum samples). Our system, the combined use of a paper-based test strip and a spectrum-based optical reader, provided both qualitative and quantitative information. When used with the optical reader, the detection limit was improved from a qualitative, naked-eye level of 400 pg/ml to a quantitative, optical reader level of 76.85 pg/ml. After monitoring serum interleukin-6 level via our system, we found a high correlation between our system results and those obtainable using a conventional sandwich enzyme-linked immunosorbent assay method (Rho = 0.706, p < 0.001). The sensitivity and specificity for differentiating between severe and mild influenza using our combined method (test strip coupled with optical reader) were 78.3 and 50.0%, respectively. When interleukin-6 was combined with serum C-reaction protein, the sensitivity and specificity were 85.7 and 95.5%, and the receiver operating characteristic area-under-the-curve was quite high (AUC = 0.911, p < 0.001). The potential advantages of our system, i.e., a paper-based test strip coupled with a spectrum-based optical reader, are as follows: 1) simple user operation; 2) rapid turnaround times–within 20 min; 3) high detection performance; and, 4) low-cost fabrication.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James D. Allen ◽  
Ted M. Ross

AbstractWhile vaccines remain the best tool for preventing influenza virus infections, they have demonstrated low to moderate effectiveness in recent years. Seasonal influenza vaccines typically consist of wild-type influenza A and B viruses that are limited in their ability to elicit protective immune responses against co-circulating influenza virus variant strains. Improved influenza virus vaccines need to elicit protective immune responses against multiple influenza virus drift variants within each season. Broadly reactive vaccine candidates potentially provide a solution to this problem, but their efficacy may begin to wane as influenza viruses naturally mutate through processes that mediates drift. Thus, it is necessary to develop a method that commercial vaccine manufacturers can use to update broadly reactive vaccine antigens to better protect against future and currently circulating viral variants. Building upon the COBRA technology, nine next-generation H3N2 influenza hemagglutinin (HA) vaccines were designed using a next generation algorithm and design methodology. These next-generation broadly reactive COBRA H3 HA vaccines were superior to wild-type HA vaccines at eliciting antibodies with high HAI activity against a panel of historical and co-circulating H3N2 influenza viruses isolated over the last 15 years, as well as the ability to neutralize future emerging H3N2 isolates.


2020 ◽  
Vol 45 (5) ◽  
pp. 491-498
Author(s):  
Fatih Yesildal ◽  
Ferruh Kemal Isman

AbstractObjectiveCOVID-19 pandemia still continues to threaten the whole world. High dose ascorbic acid (AA) infusion is a choice of treatment and its efficiency is still being investigated. AA interferes with many clinical chemistry tests. However, data about the interference of high concentrations of AA is not sufficient. In this study, we aimed to investigate the interference of AA at high concentrations on commonly used chemistry assays.Materials and MethodsSerum samples at AA concentrations of 200, 150, 100, 75, 50, 25, 10, 5, 2 and 0 mg/dL were prepared by using the stock solution of 15000 mg/dL AA. Each sample was analyzed by using the most common 30 chemistry tests (Abbott Architect C8000, Illinois, USA) and a POCT glucometer (STANDARD GlucoNavii, Gyeonggi-do, Republic of Korea).ResultsCreatinine, sodium and glucose (POCT) tests were found to be positively interfered by increasing AA concentrations; while direct bilirubin, lipase, UIBC, triglyceride, total cholesterol, HDL/LDL cholesterol tests were negatively interfered. Absolute interference (%) increased as the AA concentration increased.ConclusionThis is the largest and first study to investigate the interference of high dose AA, which is used in severe COVID-19 patients nowadays. Manufacturers and clinicians should be aware of the possibility of aberrant results due to high dose AA infusion. Clinicians should not forget to consult a laboratory specialist, since he is the only person to monitor the reactions in all assays, and know the technical subjects like interferences, assay method specifications. This issue is very important for correct decision-making and interpretation of the data-mining studies accurately and efficiently.


2012 ◽  
Vol 87 (3) ◽  
pp. 1400-1410 ◽  
Author(s):  
Donald M. Carter ◽  
Chalise E. Bloom ◽  
Eduardo J. M. Nascimento ◽  
Ernesto T. A. Marques ◽  
Jodi K. Craigo ◽  
...  

ABSTRACTIndividuals <60 years of age had the lowest incidence of infection, with ∼25% of these people having preexisting, cross-reactive antibodies to novel 2009 H1N1 influenza. Many people >60 years old also had preexisting antibodies to novel H1N1. These observations are puzzling because the seasonal H1N1 viruses circulating during the last 60 years were not antigenically similar to novel H1N1. We therefore hypothesized that a sequence of exposures to antigenically different seasonal H1N1 viruses can elicit an antibody response that protects against novel 2009 H1N1. Ferrets were preinfected with seasonal H1N1 viruses and assessed for cross-reactive antibodies to novel H1N1. Serum from infected ferrets was assayed for cross-reactivity to both seasonal and novel 2009 H1N1 strains. These results were compared to those of ferrets that were sequentially infected with H1N1 viruses isolated prior to 1957 or more-recently isolated viruses. Following seroconversion, ferrets were challenged with novel H1N1 influenza virus and assessed for viral titers in the nasal wash, morbidity, and mortality. There was no hemagglutination inhibition (HAI) cross-reactivity in ferrets infected with any single seasonal H1N1 influenza viruses, with limited protection to challenge. However, sequential H1N1 influenza infections reduced the incidence of disease and elicited cross-reactive antibodies to novel H1N1 isolates. The amount and duration of virus shedding and the frequency of transmission following novel H1N1 challenge were reduced. Exposure to multiple seasonal H1N1 influenza viruses, and not to any single H1N1 influenza virus, elicits a breadth of antibodies that neutralize novel H1N1 even though the host was never exposed to the novel H1N1 influenza viruses.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 394
Author(s):  
Tatyana Ilyicheva ◽  
Vasily Marchenko ◽  
Olga Pyankova ◽  
Anastasia Moiseeva ◽  
Tran Thi Nhai ◽  
...  

To cause a pandemic, an influenza virus has to overcome two main barriers. First, the virus has to be antigenically new to humans. Second, the virus has to be directly transmitted from humans to humans. Thus, if the avian influenza virus is able to pass the second barrier, it could cause a pandemic, since there is no immunity to avian influenza in the human population. To determine whether the adaptation process is ongoing, analyses of human sera could be conducted in populations inhabiting regions where pandemic virus variant emergence is highly possible. This study aimed to analyze the sera of Vietnamese residents using hemagglutinin inhibition reaction (HI) and microneutralization (MN) with A/H5Nx (clade 2.3.4.4) influenza viruses isolated in Vietnam and the Russian Federation in 2017–2018. In this study, we used sera from 295 residents of the Socialist Republic of Vietnam collected from three groups: 52 samples were collected from households in Nam Dinh province, where poultry deaths have been reported (2017); 96 (2017) and 147 (2018) samples were collected from patients with somatic but not infectious diseases in Hanoi. In all, 65 serum samples were positive for HI, at least to one H5 virus used in the study. In MN, 47 serum samples neutralizing one or two viruses at dilutions of 1/40 or higher were identified. We postulate that the rapidly evolving A/H5Nx (clade 2.3.4.4) influenza virus is possibly gradually adapting to the human host, insofar as healthy individuals have antibodies to a wide spectrum of variants of that subtype.


2012 ◽  
Vol 56 (12) ◽  
pp. 6328-6333 ◽  
Author(s):  
Donald F. Smee ◽  
Mark von Itzstein ◽  
Beenu Bhatt ◽  
E. Bart Tarbet

ABSTRACTCompounds lacking oral activity may be delivered intranasally to treat influenza virus infections in mice. However, intranasal treatments greatly enhance the virulence of such virus infections. This can be partially compensated for by giving reduced virus challenge doses. These can be 100- to 1,000-fold lower than infections without such treatment and still cause equivalent mortality. We found that intranasal liquid treatments facilitate virus production (probably through enhanced virus spread) and that lung pneumonia was delayed by only 2 days relative to a 1,000-fold higher virus challenge dose not accompanied by intranasal treatments. In one study, zanamivir was 90 to 100% effective at 10 mg/kg/day by oral, intraperitoneal, and intramuscular routes against influenza A/California/04/2009 (H1N1) virus in mice. However, the same compound administered intranasally at 20 mg/kg/day for 5 days gave no protection from death although the time to death was significantly delayed. A related compound, Neu5Ac2en (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid), was ineffective at 100 mg/kg/day. Intranasal zanamivir and Neu5Ac2en were 70 to 100% protective against influenza A/NWS/33 (H1N1) virus infections at 0.1 to 10 and 30 to 100 mg/kg/day, respectively. Somewhat more difficult to treat was A/Victoria/3/75 virus that required 10 mg/kg/day of zanamivir to achieve full protection. These results illustrate that treatment of influenza virus infections by the intranasal route requires consideration of both virus challenge dose and virus strain in order to avoid compromising the effectiveness of a potentially useful antiviral agent. In addition, the intranasal treatments were shown to facilitate virus replication and promote lung pathology.


Sign in / Sign up

Export Citation Format

Share Document