scholarly journals Microtubule Severing Protein Fignl2 Contributes to Endothelial and Neuronal Branching in Zebrafish Development

Author(s):  
Zhangji Dong ◽  
Xu Chen ◽  
Yuanyuan Li ◽  
Run Zhuo ◽  
Xiaona Lai ◽  
...  

Previously, fidgetin (fign) and its family members fidgetin-like 1 (fignl1) and fidgetin-like 2 (fignl2) were found to be highly expressed during zebrafish brain development, suggesting their functions in the nervous system. In this study, we report the effects of loss-of-function of these genes on development. We designed and identified single-guide RNAs targeted to generate fign, fignl1, and fignl2 mutants and then observed the overall morphological and behavioral changes. Our findings showed that while fign and fignl1 null mutants displayed no significant defects, fignl2 null zebrafish mutants displayed pericardial edema, reduced heart rate, and smaller eyes; fignl2 null mutants responded to the light-darkness shift with a lower swimming velocity. fignl2 mRNAs were identified in vascular endothelial cells by in situ hybridization and re-analysis of an online dataset of single-cell RNAseq results. Finally, we used morpholino oligonucleotides to confirm that fignl2 knockdown resulted in severe heart edema, which was caused by abnormal vascular branching. The zebrafish fignl2 morphants also showed longer axonal length and more branches of caudal primary neurons. Taken together, we summarize that Fignl2 functions on cellular branches in endothelial cells and neurons. This study reported for the first time that the microtubule-severing protein Fignl2 contributes to cell branching during development.

Author(s):  
Lixian Liu ◽  
Liying Xing ◽  
Rongyuan Chen ◽  
Jianing Zhang ◽  
Yuye Huang ◽  
...  

The mitogen-inducible gene 6 (MIG6) is an adaptor protein widely expressed in vascular endothelial cells. However, it remains unknown thus far whether it plays a role in angiogenesis. Here, using comprehensive in vitro and in vivo model systems, we unveil a potent anti-angiogenic effect of MIG6 in retinal development and neovascularization and the underlying molecular and cellular mechanisms. Loss of function assays using genetic deletion of Mig6 or siRNA knockdown increased angiogenesis in vivo and in vitro, while MIG6 overexpression suppressed pathological angiogenesis. Moreover, we identified the cellular target of MIG6 by revealing its direct inhibitory effect on vascular endothelial cells (ECs). Mechanistically, we found that the anti-angiogenic effect of MIG6 is fulfilled by binding to SHC1 and inhibiting its phosphorylation. Indeed, SHC1 knockdown markedly diminished the effect of MIG6 on ECs. Thus, our findings show that MIG6 is a potent endogenous inhibitor of angiogenesis that may have therapeutic value in anti-angiogenic therapy.


2017 ◽  
Vol 2 ◽  
pp. 111
Author(s):  
Alexander M. J. Eve ◽  
James C. Smith

Background: Previous work in the zebrafish embryo has shown that laminin γ-3 (lamc3) is enriched in endothelial cells marked by expression of fli1a, but the role of Lamc3 has been unknown. Methods: We use antisense morpholino oligonucleotides, and CRISPR/Cas9 mutagenesis of F0 embryos, to create zebrafish embryos in which lamc3 expression is compromised. Transgenic imaging, immunofluorescence, and in situ hybridisation reveal that Lamc3 loss-of-function affects the development of muscle pioneers, endothelial cells, and motoneurons. Results: Lamc3 is enriched in endothelial cells during zebrafish development, but it is also expressed by other tissues. Depletion of Lamc3 by use of antisense morpholino oligonucleotides perturbs formation of the parachordal chain and subsequently the thoracic duct, but Lamc3 is not required for sprouting of the cardinal vein. F0 embryos in which lamc3 expression is perturbed by a CRISPR/Cas9 approach also fail to form a parachordal chain, but we were unable to establish a stable lamc3 null line. Lamc3 is dispensable for muscle pioneer specification and for the expression of netrin-1a in these cells. Lamc3 knockdown causes netrin-1a up-regulation in the neural tube and there is increased Netrin-1 protein throughout the trunk of the embryo. Axonal guidance of rostral primary motoneurons is defective in Lamc3 knockdown embryos. Conclusions: We suggest that knockdown of Lamc3 perturbs migration of rostral primary motoneurons at the level of the horizontal myoseptum, indicating that laminin γ3 plays a role in motoneuron guidance.


2004 ◽  
Vol 78 (18) ◽  
pp. 10023-10033 ◽  
Author(s):  
Gabriele Hahn ◽  
Maria Grazia Revello ◽  
Marco Patrone ◽  
Elena Percivalle ◽  
Giulia Campanini ◽  
...  

ABSTRACT Human cytomegalovirus (HCMV), a ubiquitous human pathogen, is the leading cause of birth defects and morbidity in immunocompromised patients and a potential trigger for vascular disease. HCMV replicates in vascular endothelial cells and drives leukocyte-mediated viral dissemination through close endothelium- leukocyte interaction. However, the genetic basis of HCMV growth in endothelial cells and transfer to leukocytes is unknown. We show here that the UL131-128 gene locus of HCMV is indispensable for both productive infection of endothelial cells and transmission to leukocytes. The experimental evidence for this is based on both the loss-of-function phenotype in knockout mutants and natural variants and the gain-of-function phenotype by trans-complementation with individual UL131, UL130, and UL128 genes. Our findings suggest that a common mechanism of virus transfer may be involved in both endothelial cell tropism and leukocyte transfer and shed light on a crucial step in the pathogenesis of HCMV infection.


1988 ◽  
Vol 60 (02) ◽  
pp. 226-229 ◽  
Author(s):  
Jerome M Teitel ◽  
Hong-Yu Ni ◽  
John J Freedman ◽  
M Bernadette Garvey

SummarySome classical hemophiliacs have a paradoxical hemostatic response to prothrombin complex concentrate (PCC). We hypothesized that vascular endothelial cells (EC) may contribute to this “factor VIII bypassing activity”. When PCC were incubated with suspensions or monolayer cultures of EC, they acquired the ability to partially bypass the defect of factor VIII deficient plasma. This factor VIII bypassing activity distributed with EC and not with the supernatant PCC, and was not a general property of intravascular cells. The effect of PCC was even more dramatic on fixed EC monolayers, which became procoagulant after incubation with PCC. The time courses of association and dissociation of the PCC-derived factor VIII bypassing activity of fixed and viable EC monolayers were both rapid. We conclude that EC may provide a privileged site for sequestration of constituents of PCC which express coagulant activity and which bypass the abnormality of factor VIII deficient plasma.


1995 ◽  
Vol 74 (04) ◽  
pp. 1045-1049 ◽  
Author(s):  
P Butthep ◽  
A Bunyaratvej ◽  
Y Funahara ◽  
H Kitaguchi ◽  
S Fucharoen ◽  
...  

SummaryAn increased level of plasma thrombomodulin (TM) in α- and β- thalassaemia was demonstrated using an enzyme-linked immunosorbent assay (ELISA). Nonsplenectomized patients with β-thalassaemia/ haemoglobin E (BE) had higher levels of TM than splenectomized cases (BE-S). Patients with leg ulcers (BE-LU) were found to have the highest increase in TM level. Appearance of larger platelets in all types of thalassaemic blood was observed indicating an increase in the number of younger platelets. These data indicate that injury of vascular endothelial cells is present in thalassaemic patients.


1986 ◽  
Vol 55 (03) ◽  
pp. 369-374 ◽  
Author(s):  
Raffaele De Caterina ◽  
Babette B Weksler

SummaryTo learn whether glucocorticoids inhibit prostaglandin (PG) production in vascular endothelial cells, we investigated the effects of glucocorticoids on PG synthesis by cultured human umbilical vein endothelial cells (EC). Pretreatment of EC with dexamethasone (DX, 10-9 to 5 x 10-5 M) caused a dose-dependent inhibition of PGI2 production when PG synthesis from endogenous arachidonate was stimulated by human thrombin (0.25-2 U/ml) or ionophore A 23187 (1-5 μM). The inhibition was detectable at 10-7 M DX and maximal at 10-5 M (4.0 ± 0.7 vs. control: 7.7 ± 1.9 ng/ml, mean ± S.D., P <0.01). The production of PGE2 and the release of radiolabelled arachidonate (AA) from prelabelled cells were similarly inhibited. Prolonged incubation of EC with glucocorticoids was required to inhibit PG production or arachidonate release: ranging from 8% inhibition at 5 h to 44% at 38 h. In contrast, prostaglandin formation from exogenous AA was not altered by DX treatment. When thrombin or ionophore-stimulated EC were restimulated with exogenous AA (25 μM), DX-treated cells released more PGI2 than control cells (5.7 ± 0.5 vs. 4.1 ± 0.6 ng/ml, P <0.01). Both the decrease in PGI2 production after thrombin/ionophore and the increase after re-stimulation with AA were blunted in the presence of the protein synthesis inhibitor cycloheximide (0.1-0.2 μg/ml). Thus, incubation of EC with glucocorticoids inhibits PG production at the step of phospholipase activation. The time requirement for these steroid effects and their blunting by cycloheximide are consistent with the induction of regulatory proteins, possibly lipocortins, in endothelial cells.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 487-P
Author(s):  
MUNENORI HIROMURA ◽  
YUSAKU MORI ◽  
MASAKAZU KOSHIBU ◽  
HIDEKI KUSHIMA ◽  
KYOKO KOHASHI ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 476-P
Author(s):  
YUSUKE TAKEDA ◽  
KEIICHIRO MATOBA ◽  
DAIJI KAWANAMI ◽  
YOSUKE NAGAI ◽  
TOMOYO AKAMINE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document