scholarly journals Paraquat Reduces the Female Fertility by Impairing the Oocyte Maturation in Mice

Author(s):  
Yan-Li Sun ◽  
Xue-Lin Wang ◽  
Lei-Lei Yang ◽  
Zhao-Jia Ge ◽  
Yong Zhao ◽  
...  

Paraquat (PQ) is a widely used non-selective and oxidizing herbicide in farmland, orchards, flower nursery, and grassland. Overuse of PQ will accumulate in the body and affect the reproduction in mammals. In this study, we found that PQ could reduce the female fertility by oral administration for 21 days in mice. PQ exposure could impair the nuclear maturation by perturbing the spindle assembly and kinetochore–microtubule attachment to cause the misaligned chromosomes during meiosis. In the meantime, PQ exposure disturbed the mitochondrial distribution and enhanced the level of reactive oxygen species and early apoptosis, which thereby deteriorated the early embryo development. Also, PQ administration could cause some changes in epigenetic modifications such as the level of H3K9me2 and H3K27me3. Therefore, PQ administration reduces the female fertility by impairing the nuclear and cytoplasmic maturation of oocytes in mice.

Zygote ◽  
2002 ◽  
Vol 10 (4) ◽  
pp. 349-354 ◽  
Author(s):  
Yong-Hai Li ◽  
Rui-Hua Liu ◽  
Li-Hong Jiao ◽  
Wei-Hua Wang

This study was conducted to examine the effect of epidermal growth factor (EGF) and 17β-estradiol (E2) on nuclear and cytoplasmic (male pronuclear formation and early embryo development) maturation of porcine oocytes. Oocytes were aspirated from antral follicles and cultured in modified TCM-199 medium supplemented with 0.57 mM cysteine, 10 IU/ml eCG, 10 IU/ml hCG, with or without EGF and/or E2. In vitro fertilisation of matured oocytes was performed in a modified Tris-buffered medium (mTBM) with frozen-thawed ejaculated spermatozoa. Oocytes were transferred to NCSU-23 supplemented with 0.4% bovine serum albumin at 6 h after in vitro fertilisation. Significantly higher (p < 0.05) rates of nuclear maturation, pronuclear formation and cleavage (91.7%, 65.2% and 37.3%, respectively) were observed when oocytes were cultured in the medium containing both EGF (10 ng/ml) and E2 (1 μg/ml) than in the medium supplemented with either EGF or E2 or without both. Intracellular glutathione concentration in the oocytes cultured in the medium containing both E2 and EGF was also significantly higher (12.1 pmol per oocyte) than that of oocytes cultured in the medium with E2 or EGF alone or without both. These findings suggested that EGF and E2 have a synergestic effect on both nuclear and cytoplasmic maturation of porcine oocytes.


2016 ◽  
Vol 28 (2) ◽  
pp. 232
Author(s):  
B. A. Foster ◽  
F. A. Diaz ◽  
P. T. Hardin ◽  
E. J. Gutierrez ◽  
K. R. Bondioli

Modulators of 3′-5′-cyclic adenosine monophosphate have been extensively researched to delay nuclear maturation in in vitro maturation (IVM) systems to improve synchronization of nuclear and cytoplasmic maturation. However while normal maturation for many organelles has been characterised, there is a lack of information on how modulators affect cytoplasmic maturation. The goal of this study was to identify the effect of different components of bovine oocyte maturation systems on 3 aspects of cytoplasmic maturation. Bovine oocytes were collected from mixed breed beef cattle using transvaginal ultrasound guided oocyte aspiration. Oocytes were assigned to 1 of 4 treatments; staining immediately after collection (n = 249) or after 24 h of IVM (n = 270), 2 h of pre-IVM in Forskolin and 3-isobutyl-1-methylxanthine (IBMX; n = 254), or 2 h of pre-IVM followed by IVM (n = 259). Following treatment, half of the recovered oocytes were stained with Hoechst 33342 to determine nuclear maturation status, and Calcein AM for gap junction status. The other half were stained with Hoechst 33342, Mitotracker deep red to identify mitochondria distribution patterns and Alexa Fluor 488 conjugated phalloidin for F actin microfilament distribution. Organelle patterns were coded and statistically analysed using linear models to determine if treatment had an effect on the indicators of cytoplasmic maturation or their agreement with nuclear maturation. Results indicated that there was a high degree of variability in both cytoplasmic and nuclear maturation of oocytes irrespective of treatment group, with many oocytes exhibiting aberrant patterns in both mitochondrial and microfilament distribution. Gap junctions were classified as open (immature), partially open or closed (mature), based on the strength of Calcein fluorescence within the ooplasm. Both treatment and nuclear maturation had a significant effect on gap junction status (P < 0.001) with gap junctions tending to close as oocytes matured, while treatment in pre-IVM maintained open gap junctions, even as meiosis progressed. Mitochondria were classified as peripheral (immature), diffuse, central (mature) or too sparse to accurately classify. There was an unexpectedly high proportion of oocytes with few mitochondria (17%), suggesting an incomplete growth phase before collection. There was no correlation between meiotic stage and mitochondrial distribution (P = 0.73), with the majority of oocytes having diffuse mitochondrial distribution. As normal maturation proceeds, microfilaments aggregate and migrate peripherally. However, neither microfilament aggregation nor redistribution were correlated with nuclear maturation (P = 0.6 and P = 0.11 respectively) or mitochondrial distribution (P = 0.33 and P = 0.06 respectively). Overall, results show that while pre-IVM maintains open gap junctions, the system studied here is not sufficient for improving correlation between cytoplasmic and nuclear maturation. Many deviations from normal cytoplasmic maturation are seen with IVM and these irregularities are maintained with prematuration in Forskolin and IBMX.


2013 ◽  
Vol 25 (1) ◽  
pp. 274
Author(s):  
A. B. Giotto ◽  
A. C. G. Guimarães ◽  
C. G. M. Gonçalves ◽  
N. P. Folchini ◽  
C. I. I. U. F. Machado ◽  
...  

The reactive oxygen species (ROS) produced by animal cells and at physiological levels are responsible for several cellular functions. However, when there is an imbalance between ROS production and the antioxidant system in the cell, oxidative stress occurs and causes severe cell damage. In oocytes, ROS can affect the dynamics of maturation and early embryo development processes. Oxygen tension and the density of oocytes by medium volume during in vitro maturation (IVM) can influence ROS production. The aim of this study was to evaluate the influence of the association between oxygen tension (5 or 20%) and different oocyte densities during IVM (1 : 10 or 1 : 20 oocytes µL–1 of medium) on the ROS levels in oocytes and medium. Bovine oocytes (n = 420) were obtained from slaughterhouse ovaries by aspiration of 2- to 8-mm follicles. Quality I and II oocytes (De Loss et al. 1989 Gamete Res. 24, 197–204) were homogeneously distributed into groups of 15 oocytes per treatment: Treatment (T) 1 = 1 : 10 in 5% of O2; T2 = 1 : 10 in 20% of O2; T3 = 1 : 20 in 5% of O2; and T4 = 1 : 20 in 20% of O2. The oocytes were matured in TCM-199 supplemented with 10% oestrous mare serum, 100 µg mL–1 of epidermal growth factor, 50 µg mL–1 of LH, 5 µg mL–1 of FSH, and 22 µg mL–1 of pyruvate for 22 to 24 h at 39°C, in 5% CO2 and saturated humidity. To assay ROS production, denuded oocytes and 60-µL samples of IVM medium were evaluated by the spectrofluorometric method with 2′7′-dichlorofluorescein-diacetate, in which the fluorescence intensity emission was considered an indicator of ROS production and measured by a spectrofluorophotometer. The ROS production in oocytes and in IVM medium was expressed as units of fluorescence (UF); data were analysed by ANOVA and Duncan’s test with a 5% level of significance. Seven replications were performed. In treatment groups T1 and T3, the ROS production in oocytes was higher (P < 0.05) than in oocytes of treatment groups T2 and T4 (13.53 and 18.78 UF v. 7.92 and 6.15 UF, respectively). The ROS production in IVM medium was higher in the T1 (23.86 UF) and T2 (24.12 UF) treatment groups than in the T3 (18.78 UF) and T4 (18.57 UF) treatment groups. These results suggest an increase in ROS production in IVM oocytes under a 5% O2 atmosphere in relation to a 20% O2 atmosphere, irrespective of the oocyte density by volume of IVM medium. On the other hand, the accumulation of ROS in IVM medium seemed higher when the oocyte density was 1 oocyte to 10 µL of IVM medium, independent of the oxygen tension used. A higher level of ROS in 5% O2 tension may be caused by competition for O2 between oocyte and cumulus cells, causing a reduction in O2 levels and changing the availability of O2 to energy generation in oocytes and consequently increasing ROS generation. In this respect, 5% O2 during IVM may contribute to the onset of oxidative stress in oocytes, which may compromise fertilization and early embryo development. Further research is necessary to clarify esterase activity in oocytes and the addition of exogenous peroxidase to validate the assay. Financial support: FAPERGS (1011575) and CNPq (501763/2009).


2019 ◽  
Author(s):  
Isabel G&oacute;mez-Redondo ◽  
Priscila Ramos-Ibeas ◽  
Eva Pericuesta ◽  
Benjamín Planells ◽  
Raul Fernández-González ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 373
Author(s):  
Joshua J. Scammahorn ◽  
Isabel T. N. Nguyen ◽  
Eelke M. Bos ◽  
Harry Van Goor ◽  
Jaap A. Joles

Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.


2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk

AbstractOxidative stress, associated with an imbalance between the oxidants (reactive oxygen species) and the antioxidants in the body, contributes to the development of many diseases. The body’s fight against reactive oxygen species is supported by antioxidants. Nowadays, there are too many analytical methods, but there is no one universal technique for assessing antioxidant properties. Moreover, the applied different ways of expressing the results lead to their incompatibility and unreasonable interpretation. The paper is a literature review concerning the most frequent ways of antioxidant activities expression and for an easy and universal method of the obtained results discussion. This paper is an attempt to point out their disadvantages and advantages. The manuscript can support the searching interpretation of the obtained results which will be a good tool for the development of a number of fields, especially medicine what can help in the future detection and treatment of many serious diseases. Graphic abstract


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 466
Author(s):  
Rachid Skouta

Maintaining the physiological level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the body is highly important in the fight against radical species in the context of human health [...]


2021 ◽  
Author(s):  
Zhen Sun ◽  
Hua Yu ◽  
Jing Zhao ◽  
Tianyu Tan ◽  
Hongru Pan ◽  
...  

AbstractLIN28 is an RNA binding protein with important roles in early embryo development, stem cell differentiation/reprogramming, tumorigenesis and metabolism. Previous studies have focused mainly on its role in the cytosol where it interacts with Let-7 microRNA precursors or mRNAs, and few have addressed LIN28’s role within the nucleus. Here, we show that LIN28 displays dynamic temporal and spatial expression during murine embryo development. Maternal LIN28 expression drops upon exit from the 2-cell stage, and zygotic LIN28 protein is induced at the forming nucleolus during 4-cell to blastocyst stage development, to become dominantly expressed in the cytosol after implantation. In cultured pluripotent stem cells (PSCs), loss of LIN28 led to nucleolar stress and activation of a 2-cell/4-cell-like transcriptional program characterized by the expression of endogenous retrovirus genes. Mechanistically, LIN28 binds to small nucleolar RNAs and rRNA to maintain nucleolar integrity, and its loss leads to nucleolar phase separation defects, ribosomal stress and activation of P53 which in turn binds to and activates 2C transcription factor Dux. LIN28 also resides in a complex containing the nucleolar factor Nucleolin (NCL) and the transcriptional repressor TRIM28, and LIN28 loss leads to reduced occupancy of the NCL/TRIM28 complex on the Dux and rDNA loci, and thus de-repressed Dux and reduced rRNA expression. Lin28 knockout cells with nucleolar stress are more likely to assume a slowly cycling, translationally inert and anabolically inactive state, which is a part of previously unappreciated 2C-like transcriptional program. These findings elucidate novel roles for nucleolar LIN28 in PSCs, and a new mechanism linking 2C program and nucleolar functions in PSCs and early embryo development.


Author(s):  
Anahita Rezaeiroshan ◽  
Majid Saeedi ◽  
Katayoun Morteza-Semnani ◽  
Jafar Akbari ◽  
Akbar Hedayatizadeh-Omran ◽  
...  

Abstract Purposes Reactive oxygen species production is harmful to human’s health. The presence of antioxidants in the body may help to diminish reactive oxygen species. Trans-ferulic acid is a good antioxidant, but its low water solubility excludes its utilization. The study aims to explore whether a vesicular drug delivery could be a way to overcome the poor absorption of trans-ferulic acid hence improving its antimicrobial efficiency and antioxidant effect. Methods Niosomal vesicles containing the drug were prepared by film hydration method. The obtained vesicles were investigated in terms of morphology, size, entrapment efficiency, release behavior, cellular cytotoxicity, antioxidant, cellular protection study, and antimicrobial evaluations. Results The optimized niosomal formulation had a particle size of 158.7 nm and entrapment efficiency of 21.64%. The results showed that the optimized formulation containing 25 μM of trans-ferulic acid could enhance the viability of human foreskin fibroblast HFF cell line against reactive oxygen species production. The minimum effective dose of the plain drug and the niosomal formulation against Staphylococcus aurous (ATCC 29213) was 750 µg/mL and 375 µg/mL, respectively, and for Escherichia coli (ATCC 25922), it was 750 µg/mL and 187/5 µg/mL, respectively. The formulation could also improve the minimum bactericidal concentration of the drug in Staphylococcus aurous, Escherichia coli, and Acinobacter baumannii (ATCC 19606). Conclusion These results revealed an improvement in both antibacterial and antioxidant effects of the drug in the niosomal formulation.


2016 ◽  
Vol 27 (5) ◽  
pp. 768-775 ◽  
Author(s):  
Xue-Shan Ma ◽  
Fei Lin ◽  
Zhong-Wei Wang ◽  
Meng-Wen Hu ◽  
Lin Huang ◽  
...  

Geminin controls proper centrosome duplication, cell division, and differentiation. We investigated the function of geminin in oogenesis, fertilization, and early embryo development by deleting the geminin gene in oocytes from the primordial follicle stage. Oocyte-specific disruption of geminin results in low fertility in mice. Even though there was no evident anomaly of oogenesis, oocyte meiotic maturation, natural ovulation, or fertilization, early embryo development and implantation were impaired. The fertilized eggs derived from mutant mice showed developmental delay, and many were blocked at the late zygote stage. Cdt1 protein was decreased, whereas Chk1 and H2AX phosphorylation was increased, in fertilized eggs after geminin depletion. Our results suggest that disruption of maternal geminin may decrease Cdt1 expression and cause DNA rereplication, which then activates the cell cycle checkpoint and DNA damage repair and thus impairs early embryo development.


Sign in / Sign up

Export Citation Format

Share Document