scholarly journals Myeloid MKL1 Disseminates Cues to Promote Cardiac Hypertrophy in Mice

Author(s):  
Li Liu ◽  
Qianwen Zhao ◽  
Lin Lin ◽  
Guang Yang ◽  
Liming Yu ◽  
...  

Cardiac hypertrophy is a key pathophysiological process in the heart in response to stress cues. Although taking place in cardiomyocytes, the hypertrophic response is influenced by other cell types, both within the heart and derived from circulation. In the present study we investigated the myeloid-specific role of megakaryocytic leukemia 1 (MKL1) in cardiac hypertrophy. Following transverse aortic constriction (TAC), myeloid MKL1 conditional knockout (MFCKO) mice exhibit an attenuated phenotype of cardiac hypertrophy compared to the WT mice. In accordance, the MFCKO mice were protected from excessive cardiac inflammation and fibrosis as opposed to the WT mice. Conditioned media collected from macrophages enhanced the pro-hypertrophic response in cardiomyocytes exposed to endothelin in an MKL1-dependent manner. Of interest, expression levels of macrophage derived miR-155, known to promote cardiac hypertrophy, were down-regulated in the MFCKO mice compared to the WT mice. MKL1 depletion or inhibition repressed miR-155 expression in macrophages. Mechanistically, MKL1 interacted with NF-κB to activate miR-155 transcription in macrophages. In conclusion, our data suggest that MKL1 may contribute to pathological hypertrophy via regulating macrophage-derived miR-155 transcription.

1994 ◽  
Vol 267 (4) ◽  
pp. H1496-H1506 ◽  
Author(s):  
E. Golomb ◽  
Z. A. Abassi ◽  
G. Cuda ◽  
M. Stylianou ◽  
V. R. Panchal ◽  
...  

The role of angiotensin II (ANG II) in the development of isoproterenol (Iso)-induced cardiac hypertrophy was examined in rats. Iso increased cardiac mass, left ventricular RNA-to-DNA ratio, and the cardiac content of both myosin heavy chain and hydroxyproline in a dose-dependent manner, indicating that Iso-induced cardiac hypertrophy involves growth of both muscle and connective tissue. Cardiac hypertrophy reverted within 11-14 days after cessation of Iso. Propranolol prevented development of Iso-induced cardiac hypertrophy but did not affect the rate of its reversal. The ANG II receptor blocker losartan (Los) did not significantly decrease the hypertrophic response to Iso. Los injected after cessation of Iso dramatically enhanced the reversal of cardiac hypertrophy, even in rats that received Los with Iso during the induction of Iso-induced cardiac hypertrophy. ANG II, injected continuously at a subpressor dose that did not affect heart weight when given alone, inhibited reversal of cardiac hypertrophy when given after cessation of Iso. Los did not significantly affect the induction of the protooncogene c-fos by Iso. We conclude that endogenous ANG II has a major function in maintaining Iso-induced cardiac hypertrophy but does not mediate its induction. This suggests that different interactive stimuli may be required for development of cardiac hypertrophy, i.e., for initiation and for maintenance.


2006 ◽  
Vol 203 (1) ◽  
pp. 189-201 ◽  
Author(s):  
Ronit Vogt Sionov ◽  
Orly Cohen ◽  
Shlomit Kfir ◽  
Yael Zilberman ◽  
Eitan Yefenof

The mechanisms by which glucocorticoid receptor (GR) mediates glucocorticoid (GC)-induced apoptosis are unknown. We studied the role of mitochondrial GR in this process. Dexamethasone induces GR translocation to the mitochondria in GC-sensitive, but not in GC-resistant, T cell lines. In contrast, nuclear GR translocation occurs in all cell types. Thymic epithelial cells, which cause apoptosis of the PD1.6 T cell line in a GR-dependent manner, induce GR translocation to the mitochondria, but not to the nucleus, suggesting a role for mitochondrial GR in eliciting apoptosis. This hypothesis is corroborated by the finding that a GR variant exclusively expressed in the mitochondria elicits apoptosis of several cancer cell lines. A putative mitochondrial localization signal was defined to amino acids 558–580 of human GR, which lies within the NH2-terminal part of the ligand-binding domain. Altogether, our data show that mitochondrial and nuclear translocations of GR are differentially regulated, and that mitochondrial GR translocation correlates with susceptibility to GC-induced apoptosis.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Yoon Seok Nam ◽  
Duk-Hwa Kwon ◽  
Gwang Hyeon Eom ◽  
Hyun Kook

Rationale: Small heterodimer partner (SHP; NR0B2) is an atypical orphan nuclear receptor that lacks a conventional DNA binding domain. By interacting with other transcription factors, SHP regulates diverse biological events including glucose metabolism in liver. The role of SHP in adult heart diseases has not yet been demonstrated. Objective: We aimed to investigate the role of SHP in adult heart in association with cardiac hypertrophy. Methods and Results: The roles of SHP in cardiac hypertrophy were tested in primary cultured cardiomyocytes and in animal models. SHP null mice showed a hypertrophic phenotype. Hypertrophic stresses repressed the expression of SHP, whereas forced expression of SHP blocked the development of cardiomyocyte hypertrophy. SHP reduced the protein amount of Gata6. By direct physical interaction with Gata6, SHP interfered with the binding of Gata6 to GATA binding elements in the promoter regions of natriuretic peptide precursor type A. Metformin, an anti-diabetic agent, induced SHP and suppressed cardiac hypertrophy. The metformin-induced anti-hypertrophic effect was attenuated either by SHP siRNA in cardiomyocytes or in SHP null mice. Conclusions: These results establish SHP as a novel anti-hypertrophic regulator that acts by interfering with GATA6 signaling. SHP may participate in the metformin-induced anti-hypertrophic response.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Priya Aujla ◽  
Sayantan Jana ◽  
Michael Chute ◽  
Zamaneh Kassiri

Introduction: Disintegrin and metalloproteinases (ADAMs) are membrane-bound cell surface enzymes that are capable of both proteolytic functions (via the metalloproteinase domain) and adhesive functions (via the disintegrin domain), whereby they can influence cell function and extracellular matrix (ECM) remodelling in the heart. ADAM15 is unique among the ADAMs, as it is also capable of degrading ECM proteins. ADAM12 and ADAM17 have been reported to regulate cardiac hypertrophy, but the role of ADAM15 in cardiac hypertrophy is not known. This study investigates the role of ADAM15 in cardiac hypertrophy and fibrosis following pressure overload. Methods & Results: Genetically modified male ADAM15-deficient ( Adam15 -/- ) and wildtype (WT) mice were subjected to cardiac pressure overload by transverse aortic constriction (TAC). Cardiac function and structural remodelling were assessed using echocardiography at 2-, and 6-wks post-TAC. Hearts were excised at 2-, or 6-wks post-TAC. Adam15 -/- hearts presented greater hypertrophy and decreased cardiac systolic function at 6wks post-TAC, but no difference at 2wks post-TAC compared to WT-TAC mice. Adam15 -/- hearts also showed exacerbated fibrosis at 6wks post-TAC, but not at 2wks post-TAC, compared to WT. Mechanical strain (i.e. pressure overload) triggers two temporally activated pathways leading to an initial compensatory hypertrophy, which can culminate to decompensation and dilated cardiomyopathy. Consistent with the greater hypertrophy, phosphorylation of ERK1/2, JNK1/2/3, and GSK3β was increased in Adam15 -/- mice. The calcineurin-NFAT pathways can mediate pressure overload-induced hypertrophy, but we found that Adam15-deficiency did not impact this pathway. The mechanism responsible for this function of ADAM15 requires further investigation. Conclusion: This study reports a novel cardioprotective function for ADAM15 in pressure overload, where loss of ADAM15 promotes cardiac fibrosis and decompensated cardiac hypertrophy but does not alter the compensated hypertrophic response.


2001 ◽  
Vol 280 (5) ◽  
pp. H2264-H2270 ◽  
Author(s):  
Brian B. Roman ◽  
David L. Geenen ◽  
Michael Leitges ◽  
Peter M. Buttrick

Studies in human and rodent models have shown that activation of protein kinase C-β (PKC-β) is associated with the development of pathological hypertrophy, suggesting that ablation of the PKC-β pathway might prevent or reverse cardiac hypertrophy. To explore this, we studied mice with targeted disruption of the PKC-β gene (knockout, KO). There were no detectable differences in expression or distribution of other PKC isoforms between the KO and control hearts as determined by Western blot analysis. Baseline hemodynamics were measured using a closed-chest preparation and there were no differences in heart rate and arterial or left ventricular pressure. Mice were subjected to two independent hypertrophic stimuli: phenylephrine (Phe) at 20 mg · kg−1 · day−1 sq infusion for 3 days, and aortic banding (AoB) for 7 days. KO animals demonstrated an increase in heart weight-to-body weight ratio (Phe, 4.3 ± 0.6 to 6.1 ± 0.4; AoB, 4.0 ± 0.1 to 5.8 ± 0.7) as well as ventricular upregulation of atrial natriuretic factor mRNA analogous to those seen in control animals. These results demonstrate that PKC-β expression is not necessary for the development of cardiac hypertrophy nor does its absence attenuate the hypertrophic response.


2020 ◽  
Vol 21 (4) ◽  
pp. 1274
Author(s):  
Hideka Saotome ◽  
Atsumi Ito ◽  
Atsushi Kubo ◽  
Masafumi Inui

Sox9 is a master transcription factor for chondrogenesis, which is essential for chondrocyte proliferation, differentiation, and maintenance. Sox9 activity is regulated by multiple layers, including post-translational modifications, such as SUMOylation. A detection method for visualizing the SUMOylation in live cells is required to fully understand the role of Sox9 SUMOylation. In this study, we generated a quantitative reporter for Sox9 SUMOylation that is based on the NanoBiT system. The simultaneous expression of Sox9 and SUMO1 constructs that are conjugated with NanoBiT fragments in HEK293T cells induced luciferase activity in SUMOylation target residue of Sox9-dependent manner. Furthermore, the reporter signal could be detected from both cell lysates and live cells. The signal level of our reporter responded to the co-expression of SUMOylation or deSUMOylation enzymes by several fold, showing dynamic potency of the reporter. The reporter was active in multiple cell types, including ATDC5 cells, which have chondrogenic potential. Finally, using this reporter, we revealed a extracellular signal conditions that can increase the amount of SUMOylated Sox9. In summary, we generated a novel reporter that was capable of quantitatively visualizing the Sox9-SUMOylation level in live cells. This reporter will be useful for understanding the dynamism of Sox9 regulation during chondrogenesis.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Paula Sanchis ◽  
Olaya Fernández-Gayol ◽  
Gemma Comes ◽  
Kevin Aguilar ◽  
Anna Escrig ◽  
...  

Abstract Background Interleukin-6 (IL-6) is a pleiotropic cytokine that controls numerous physiological processes both in basal and neuroinflammatory conditions, including the inflammatory response to experimental autoimmune encephalomyelitis (EAE). IL-6 is produced by multiple peripheral and central cells, and until now, the putative roles of IL-6 from different cell types have been evaluated through conditional cell-specific IL-6 knockout mice. Nevertheless, these mice probably undergo compensatory responses of IL-6 from other cells, which makes it difficult to assess the role of each source of IL-6. Methods To give some insight into this problem, we have produced a novel mouse model: a conditional reversible IL-6 KO mouse (IL6-DIO-KO). By using double-inverted, open-reading-frame (DIO) technology, we created a mouse line with the loss of Il6 expression in all cells that can be restored by the action of Cre recombinase. Since microglia are one of the most important sources and targets of IL-6 into the central nervous system, we have recovered microglial Il6 expression in IL6-DIO-KO mice through breeding to Cx3cr1-CreER mice and subsequent injection of tamoxifen (TAM) when mice were 10–16 weeks old. Then, they were immunized with myelin oligodendrocyte glycoprotein 35-55 peptide (MOG35-55) 7 weeks after TAM treatment to induce EAE. Clinical symptoms and demyelination, CD3 infiltration, and gliosis in the spinal cord were evaluated. Results IL6-DIO-KO mice were resistant to EAE, validating the new model. Restoration of microglial Il6 was sufficient to develop a mild version of EAE-related clinical symptoms and neuropathology. Conclusions IL6-DIO-KO mouse is an excellent model to understand in detail the role of specific cellular sources of IL-6 within a recovery-of-function paradigm in EAE.


2013 ◽  
Vol 120 (6) ◽  
pp. 927-935 ◽  
Author(s):  
O. Lairez ◽  
T. Cognet ◽  
S. Schaak ◽  
D. Calise ◽  
C. Guilbeau-Frugier ◽  
...  

2021 ◽  
Author(s):  
Zhiyu Dai ◽  
Jianding Cheng ◽  
Bin Liu ◽  
Dan Yi ◽  
Anlin Feng ◽  
...  

Cardiac hypertrophy and fibrosis are common adaptive responses to injury and stress, eventually leading to heart failure. Hypoxia signaling is important to the (patho)physiological process of cardiac remodeling. However, the role of endothelial Prolyl-4 hydroxylase 2 (PHD2)/hypoxia inducible factors (HIFs) signaling in the pathogenesis of heart failure remains elusive. We observed a marked decrease of PHD2 expression in heart tissues and cardiovascular endothelial cells from patients with cardiomyopathy. Mice with Tie2-Cre-mediated deletion of Egln1 (encoding PHD2) or tamoxifen-induced endothelial Egln1 deletion exhibited left ventricular hypertrophy and cardiac fibrosis. Genetic ablation and pharmacological inhibition of Hif2a but not Hif1a in endothelial Egln1 deficient mice normalized cardiac size and function. The present studies define for the first time an unexpected role of endothelial PHD2 deficiency in inducing cardiac hypertrophy and fibrosis in a HIF-2α dependent manner. Targeting PHD2/HIF-2α signaling may represent a novel therapeutic approach for the treatment of pathological cardiac hypertrophy and failure.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Depei Liu ◽  
Yu-Xuan Luo ◽  
Xiaoqiang Tang ◽  
Xi-Zhou An ◽  
Xue-Min Xie ◽  
...  

Aims: Oxidative stress contributes to the development of cardiac hypertrophy and heart failure. One of the mitochondrial sirtuins, Sirt4, is highly expressed in the heart, but its function remains unknown. The aim of the present study was to investigate the role of Sirt4 in the pathogenesis of pathological cardiac hypertrophy and the molecular mechanism by which Sirt4 regulates mitochondrial oxidative stress. Methods and results: Male C57BL/6 Sirt4 knockout mice, transgenic mice exhibiting cardiac-specific overexpression of Sirt4 (Sirt4-Tg) and their respective controls were treated with angiotensin II (Ang II). At 4 weeks, hypertrophic growth of cardiomyocytes, fibrosis and cardiac function were analyzed. Sirt4 deficiency conferred resistance to Ang II infusion by significantly suppressing hypertrophic growth, and the deposition of fibrosis. In Sirt4-Tg mice, aggravated hypertrophy and reduced cardiac function were observed compared with non-transgenic mice following Ang II treatment. Mechanistically, Sirt4 inhibited the binding of manganese superoxide dismutase (MnSOD) to Sirt3, another member of the mitochondrial sirtuins, and increased MnSOD acetylation levels to reduce its activity, resulting in elevated reactive oxygen species (ROS) accumulation upon Ang II stimulation. Furthermore, inhibition of ROS with MnTBAP, a mimetic of SOD, blocked the Sirt4-mediated aggravation of the hypertrophic response in Ang II-treated Sirt4-Tg mice. Conclusions: Sirt4 promotes hypertrophic growth and cardiac dysfunction by increasing ROS levels upon pathological stimulation. These findings reveal a role of Sirt4 in pathological cardiac hypertrophy, providing a new potential therapeutic strategy for this disease.


Sign in / Sign up

Export Citation Format

Share Document