scholarly journals SINO Syndrome Causative KIDINS220/ARMS Gene Regulates Adipocyte Differentiation

Author(s):  
Kaihui Zhang ◽  
Wenxing Sun ◽  
Yi Liu ◽  
Yuqiang Lv ◽  
Daisen Hou ◽  
...  

Nonsense variants in KIDINS220/ARMS were identified as the main cause of spastic paraplegia, intellectual disability, nystagmus, and obesity (SINO) syndrome, a rare disease with birth defects in brachycephaly, neurological disorder, and obesity. The cause of neural cell dysfunction by KIDINS220/ARMS were extensively studied while the cause of obesity in SINO syndrome remains elusive. Here, we identified KIDINS220/ARMS as an adipocyte differentiation-regulating gene. A Chinese family, mother and her two sons, all showed severe symptoms of SINO syndrome. G-banding karyotyping, chromosome microarray analysis, and whole exome sequencing revealed a novel amber mutation, c.3934G>T (p. E1312X), which was close to the C-terminal region of KIDINS220/ARMS and resulted in the premature of the protein. Both the mRNA and protein levels of KIDINS220/ARMS gradually decreased during adipocyte differentiation. Knockdown of KINDINS220/ARMS could prompt adipocyte differentiation and lipid accumulation while overexpression of KIDINS220/ARMS decrease the rate of matured adipocytes. Furthermore, we demonstrated that KIDINS220/ARMS inhibits adipocyte maturation through sustained extracellular signal-regulated kinase signaling. In conclusion, this is the first report about a vertical heredity of severe dominant pathogenic mutation of KIDINS220/ARMS, suggested that KIDINS220/ARMS played a negative role in adipocyte maturation, explained the cause of obesity in SINO syndrome and could highlight the importance of adipocyte differentiation in neuron functions.

2012 ◽  
Vol 40 (1) ◽  
pp. 251-256 ◽  
Author(s):  
Pamela A. Lochhead ◽  
Rebecca Gilley ◽  
Simon J. Cook

The MEK5 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 5]/ERK5 pathway is the least well studied MAPK signalling module. It has been proposed to play a role in the pathology of cancer. In the present paper, we review the role of the MEK5/ERK5 pathway using the ‘hallmarks of cancer’ as a framework and consider how this pathway is deregulated. As well as playing a key role in endothelial cell survival and tubular morphogenesis during tumour neovascularization, ERK5 is also emerging as a regulator of tumour cell invasion and migration. Several oncogenes can stimulate ERK5 activity, and protein levels are increased by a novel amplification at chromosome locus 17p11 and by down-regulation of the microRNAs miR-143 and miR-145. Together, these finding underscore the case for further investigation into understanding the role of ERK5 in cancer.


2019 ◽  
Vol 16 (8) ◽  
pp. 764-769 ◽  
Author(s):  
Huayuan Wang ◽  
Ruihua Sun ◽  
Yingying Shi ◽  
Mingrong Xia ◽  
Jing Zhao ◽  
...  

Background: The rate of occurrence of Alzheimer’s disease is increasing around the world. However, there is still no significant breakthrough in the study of its etiology and pathogenesis. Objective: To screen Alzheimer's disease pathogenic genes, which may be conducive to the elucidation of the pathogenic mechanisms of Alzheimer's disease And predict the pathogenicity by various computer software. Method: Clinical and neuroimaging examination, Whole Exome Sequencing, and Sanger sequencing were performed in the proband. Mutation sites were verified in 158 subjects. Results: We reported a proband carrying a probably novel pathogenic mutation, which clinically manifests as progressive memory loss, visual-spatial disorders, apraxia, psychobehavioral disorders, and temperamental and personality changes. Whole Exome Sequencing detected a novel missense mutation at codon 222 (Q222L), which is a heterozygous A to T point mutation at position 665 (c.665A>T) in exon 5 of the presenilin 1 leading to a glutamine-to-leucine substitution. The mutation was also identified by Sanger sequencing in one family member; nevertheless, it was not detected in the other 7 unaffected family members, 50 sporadic Alzheimer's disease patients and 100 control subjects. Conclusion: A novel mutation in exon 5 of the presenilin 1 gene (Gln222Leu) in a Chinese family with early-onset Alzheimer’s disease has been reported, besides, it was predicted that the missense mutation was probably a novel pathogenic mutation that was reported for the first time in a Chinese family with early-onset Alzheimer’s disease.


2006 ◽  
Vol 27 (6) ◽  
pp. 2294-2308 ◽  
Author(s):  
Kyung-Ah Kim ◽  
Jung-Hyun Kim ◽  
Yuhui Wang ◽  
Hei Sook Sul

ABSTRACT Preadipocyte factor 1 (Pref-1) is found in preadipocytes but is absent in adipocytes. Pref-1 is made as a transmembrane protein but is cleaved to generate a biologically active soluble form. Although Pref-1 inhibition of adipogenesis has been well studied in vitro and in vivo, the signaling pathway for Pref-1 is not known. Here, by using purified soluble Pref-1 in Pref-1 null mouse embryo fibroblasts (MEF), we show that Pref-1 increases MEK/extracellular signal-regulated kinase (ERK) phosphorylation in a time- and dose-dependent manner. Compared to wild-type MEF, differentiation of Pref-1 null MEF into adipocytes is enhanced, as judged by lipid accumulation and adipocyte marker expression. Both wild-type and Pref-1 null MEF show a transient burst of ERK phosphorylation upon addition of adipogenic agents. Wild-type MEF show a significant, albeit lower, second increase in ERK phosphorylation peaking at day 2. This ERK phosphorylation, corresponding to Pref-1 abundance, is absent during differentiation of Pref-1 null MEF. Prevention of this second increase in ERK1/2 phosphorylation in wild-type MEF by the MEK inhibitor PD98059 or by transient depletion of ERK1/2 via small interfering RNA-enhanced adipocyte differentiation. Furthermore, treatment of Pref-1 null MEF with Pref-1 restores this ERK phosphorylation, resulting in inhibition of adipocyte differentiation primarily by preventing peroxisome proliferator-activated receptor γ2 induction. However, in the presence of PD98059 or depletion of ERK1/2, exogenous Pref-1 cannot inhibit adipocyte differentiation in Pref-1 null MEF. We conclude that Pref-1 activates MEK/ERK signaling, which is required for Pref-1 inhibition of adipogenesis.


2010 ◽  
Vol 29 (4) ◽  
pp. 373-378 ◽  
Author(s):  
Choong Hyun Lee ◽  
Ki-Yeon Yoo ◽  
Ok Kyu Park ◽  
Jung Hoon Choi ◽  
Il-Jun Kang ◽  
...  

Life Sciences ◽  
2011 ◽  
Vol 88 (15-16) ◽  
pp. 675-680 ◽  
Author(s):  
Pachakkil A. Haridas Nidhina ◽  
Ninu Poulose ◽  
Anilkumar Gopalakrishnapillai

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Sen Chen ◽  
Yuan Jin ◽  
Le Xie ◽  
Wen Xie ◽  
Kai Xu ◽  
...  

Waardenburg syndrome (WS), also known as auditory-pigmentary syndrome, is the most common cause of syndromic hearing loss. It is responsible for 2–5% of congenital deafness. WS is classified into four types depending on the clinical phenotypes. Currently, pathogenic mutation of PAX3, MITF, EDNRB, EDN3, SNAI2, or SOX10 can cause corresponding types of WS. Among them, SOX10 mutation is responsible for approximately 15% of type II WS or 50% of type IV WS. We report the case of a proband in a Chinese family who was diagnosed with WS type II. Whole exome sequencing (WES) of the proband detected a novel heterozygous spontaneous mutation: SOX10 c.246delC. According to analysis based on nucleic acid and amino acid sequences, this mutation may produce a truncated protein, with loss of the HMG structure domain. Therefore, this truncated protein may fail to activate the expression of the MITF gene, which regulates melanocytic development and plays a key role in WS. Our finding expands the database of SOX10 mutations associated with WS and provides more information regarding the molecular mechanism of WS.


Sign in / Sign up

Export Citation Format

Share Document