scholarly journals Identification of an Immune-Related Signature Predicting Survival Risk and Immune Microenvironment in Gastric Cancer

Author(s):  
Shuang Dai ◽  
Tao Liu ◽  
Xiao-Qin Liu ◽  
Xiao-Ying Li ◽  
Ke Xu ◽  
...  

Background: Tumor immune microenvironment plays a vital role in tumorigenesis and progression of gastric cancer (GC), but potent immune biomarkers for predicting the prognosis have not been identified yet.Methods: At first, RNA-sequencing and clinical data from The Cancer Genome Atlas (TCGA) were mined to identify an immune-risk signature using least absolute shrinkage and selection operator (LASSO) regression and multivariate stepwise Cox regression analyses. Furthermore, the risk score of each sample was calculated, and GC patients were divided into high-risk group and low-risk group based on their risk scores. Subsequently, the performance of this signature, including the correlation with overall survival (OS), clinical features, immune cell infiltration, and immune response, has been tested in GC data from TCGA database and Gene Expression Omnibus (GSE84437), respectively.Results: An immune signature composed of four genes (MAGED1, ACKR3, FZD2, and CTLA4) was constructed. The single sample gene set enrichment analysis (ssGSEA) indicated that activated CD4+/CD8+ T cell, activated dendritic cell, and effector memory CD8+ T cell prominently increased in the low-risk group, showing relatively high immune scores and low stromal scores. Further GSEA analysis indicated that TGF-β, Ras, and Rap1 pathways were activated in the high-risk group, while Th17/Th1/Th2 differentiation, T cell receptor and PD-1/PD-L1 checkpoint pathways were activated in the low-risk group. Low-risk patients presented higher tumor mutation burden (TMB) and expression of HLA-related genes. The immune-associated signature showed an excellent predictive ability for 2-, 3-, and 5-year OS in GC.Conclusion: The immune-related prognosis model contributes to predicting the prognosis of GC patients and providing valuable information about their response to immunotherapy using integrated bioinformatics methods.

2021 ◽  
Author(s):  
Fang Wen ◽  
Xiaoxue Chen ◽  
Wenjie Huang ◽  
Shuai Ruan ◽  
Suping Gu ◽  
...  

Abstract Background: The diagnosis rate and mortality of gastric cancer (GC) are among the highest in the global, so it is of great significance to predict the survival time of GC patients. Ferroptosis and iron-metabolism make a critical impact on tumor development and are closely linked to the treatment of cancer and the prognosis of patients. However, the predictive value of the genes involved in ferroptosis and iron-metabolism in GC and their effects on immune microenvironment remain to be further clarified.Methods: In this study, the RNA sequence information and general clinical indicators of GC patients were acquired from the public databases. We first systematically screen out 134 DEGs and 13 PRGs related to ferroptosis and iron-metabolism. Then, we identified six PRDEGs (GLS2, MTF1, SLC1A5, SP1, NOX4, and ZFP36) based on the LASSO-penalized Cox regression analysis. The 6-gene prognostic risk model was established in the TCGA cohort and the GC patients were separated into the high- and the low-risk groups through the risk score median value. GEO cohort was used for verification. The expression of PRDEGs was verified by quantitative QPCR.Results: Our study demonstrated that patients in the low-risk group had a higher survival probability compared with those in high-risk group. In addition, univariate and multivariate Cox regression analyses confirmed that the risk score was an independent prediction parameter. The ROC curve analysis and nomogram manifested that the risk model had the high predictive ability and was more sensitive than general clinical features. Furthermore, compared with the high-risk group, the low-risk group had higher TMB and a longer 5-year survival period. In the immune microenvironment of GC, there were also differences in immune function and highly infiltrated immune cells between the two risk groups.Conclusions: The prognostic risk model based on the six genes associated with ferroptosis and iron-metabolism has a good performance for predicting the prognosis of patients with GC. The treatment of cancer by inducing tumor ferroptosis or mediating tumor iron-metabolism, especially combined with immunotherapy, provides a new possibility for individualized treatment of GC patients.


2021 ◽  
Author(s):  
Jinlong Huo ◽  
Shuang Shen ◽  
Chen Chen ◽  
Rui Qu ◽  
Youming Guo ◽  
...  

Abstract Background: Breast cancer(BC) is the most common tumour in women. Hypoxia stimulates metastasis in cancer and is linked to poor patient prognosis.Methods: We screened prognostic-related lncRNAs(Long Non-Coding RNAs) from the Cancer Genome Atlas (TCGA) data and constructed a prognostic signature based on hypoxia-related lncRNAs in BC.Results: We identified 21 differentially expressed lncRNAs associated with BC prognosis. Kaplan Meier survival analysis indicated a significantly worse prognosis for the high-risk group(P<0.001). Moreover, the ROC-curve (AUC) of the lncRNAs signature was 0.700, a performance superior to other traditional clinicopathological characteristics. Gene set enrichment analysis (GSEA) showed many immune and cancer-related pathways and in the low-risk group patients. Moreover, TCGA revealed that functions including activated protein C (APC)co-inhibition, Cinnamoyl CoA reductase(CCR),check-point pathways, cytolytic activity, human leukocyte antigen (HLA), inflammation-promotion, major histocompatibility complex(MHC) class1, para-inflammation, T cell co-inhibition, T cell co-stimulation, and Type Ⅰ and Ⅱ Interferons (IFN) responses were significantly different in the low-risk and high-risk groups. Immune checkpoint molecules such as ICOS, IDO1, TIGIT, CD200R1, CD28, PDCD1(PD-1), were also expressed differently between the two risk groups. The expression of m6A-related mRNA indicated that YTHDC1, RBM15, METTL3, and FTO were significantly between the high and low-risk groups.Additionally, immunotherapy in patients with BC from the low-risk group yielded a higher frequency of clinical responses to anti-PD-1/PD-L1 therapy or a combination of anti-PD-1/PD-L1and anti-CTLA4 therapies.Except for lapatinib, the results also show that a high-risk score is related to a higher half-maximal inhibitory concentration (IC50) of chemotherapy drugs.Conclusion: A novel hypoxia-related lncRNAs signature may serve as a prognostic model for BC.


Author(s):  
Dongyan Zhao ◽  
Xizhen Sun ◽  
Sidan Long ◽  
Shukun Yao

AbstractAimLong non-coding RNAs (lncRNAs) have been identified to regulate cancers by controlling the process of autophagy and by mediating the post-transcriptional and transcriptional regulation of autophagy-related genes. This study aimed to investigate the potential prognostic role of autophagy-associated lncRNAs in colorectal cancer (CRC) patients.MethodsLncRNA expression profiles and the corresponding clinical information of CRC patients were collected from The Cancer Genome Atlas (TCGA) database. Based on the TCGA dataset, autophagy-related lncRNAs were identified by Pearson correlation test. Univariate Cox regression analysis and the least absolute shrinkage and selection operator analysis (LASSO) Cox regression model were performed to construct the prognostic gene signature. Gene set enrichment analysis (GSEA) was used to further clarify the underlying molecular mechanisms.ResultsWe obtained 210 autophagy-related genes from the whole dataset and found 1187 lncRNAs that were correlated with the autophagy-related genes. Using Univariate and LASSO Cox regression analyses, eight lncRNAs were screened to establish an eight-lncRNA signature, based on which patients were divided into the low-risk and high-risk group. Patients’ overall survival was found to be significantly worse in the high-risk group compared to that in the low-risk group (log-rank p = 2.731E-06). ROC analysis showed that this signature had better prognostic accuracy than TNM stage, as indicated by the area under the curve. Furthermore, GSEA demonstrated that this signature was involved in many cancer-related pathways, including TGF-β, p53, mTOR and WNT signaling pathway.ConclusionsOur study constructed a novel signature from eight autophagy-related lncRNAs to predict the overall survival of CRC, which could assistant clinicians in making individualized treatment.


2021 ◽  
Author(s):  
Yong Lv ◽  
ShuGuang Jin ◽  
Bo Xiang

Abstract BackgroundTreatment of neuroblastoma is evolving toward precision medicine. LncRNAs can be used as prognostic biomarkers in many types of cancer.MethodsBased on the RNA-seq data from GSE49710, we built a lncRNAs-based risk score using the least absolute shrinkage and selection operation (LASSO) regression. Cox regression, receiver operating characteristic curves were used to evaluate the association of the LASSO risk score with overall survival. Nomograms were created and then validated in an external cohort from TARGET database. Gene set enrichment analysis was performed to identify the significantly changed biological pathways. ResultsThe 16-lncRNAs-based LASSO risk score was used to separate patients into high-risk and low-risk groups. In GSE49710 cohort, the high-risk group exhibited a poorer OS than those in the low-risk group (P<0.001). Moreover, multivariate Cox regression analysis demonstrated that LASSO risk score was an independent risk factor (HR=6.201;95%CI:2.536-15.16). The similar prognostic powers of the 16-lncRNAs were also achieved in the external cohort and in stratified analysis. In addition, a nomogram was established and worked well both in the internal validation cohort (C-index=0.831) and external validation cohort (C-index=0.773). The calibration plot indicated the good clinical utility of the nomogram. Gene set enrichment analysis (GSEA) indicated that high-risk group was related with cancer recurrence, metastasis and inflammatory associated pathways.ConclusionThe lncRNA-based LASSO risk score is a promising and potential prognostic tool in predicting the survival of patients with neuroblastoma. The nomogram combined the lncRNAs and clinical parameters allows for accurate risk assessment in guiding clinical management.


2021 ◽  
Vol 11 ◽  
Author(s):  
Haixu Wang ◽  
Qingkai Meng ◽  
Bin Ma

N6-methyladenosine (m6A) is a common form of mRNA modification regulated by m6A RNA methylation regulators and play an important role in the progression of gastric cancer (GC). However, the prognostic role of m6A-related lncRNA in gastric cancer has not been fully explored. This study aims at exploring the biological function and prognostic roles of the m6A-related lncRNA signature in gastric cancer. A total of 800 m6A-related lncRNAs were identified through Pearson correlation analysis between m6A regulators and all lncRNAs. Eleven m6A-related lncRNA signatures were identified through a survival analysis and the Kaplan-Meier (KM) curve analysis results suggest that patients in the low-risk group have a better overall survival (OS) and disease-free survival (DFS) outcome than the high-risk group. Also, the lncRNA signature can serve as an independent prognostic factor for OS and DFS. The gene set enrichment analysis (GSEA) result suggests that patients in the high-risk group were mainly enriched in the ECM receptor interaction, focal adhesion, and cytokine-cytokine receptor interaction pathway, while the low-risk group was characterized by the base excision repair pathway. We further constructed an individualized prognostic prediction model via the nomogram based on the independent prognostic factor for the OS and DFS, respectively. In addition, some candidate drugs aimed at GC risk group differentiation were identified using the Connective Map (CMAP) database. Lastly, four subgroups (C1, C2, C3, and C4) were identified based on the m6A-related lncRNA expression, through a consensus clustering algorithm. Among them, C1 and C2 have a greater likelihood to respond to immune checkpoint inhibitor immunotherapy, suggesting that the C1 and C2 subgroup might benefit from immunotherapy. In conclusion, the m6A-related lncRNA signature can independently predict the OS and DFS of GC and may aid in development of personalized immunotherapy strategies.


Author(s):  
Qingshan Huang ◽  
Yilin Lin ◽  
Chenglong Chen ◽  
Jingbing Lou ◽  
Tingting Ren ◽  
...  

Background: Abnormal expression of lncRNA is closely related to the occurrence and metastasis of osteosarcoma. The tumor immune microenvironment (TIM) is considered to be an important factor affecting the prognosis and treatment of osteosarcoma. This study aims to explore the effect of immune-related lncRNAs (IRLs) on the prognosis of osteosarcoma and its relationship with the TIM.Methods: Ninety-five osteosarcoma samples from the TARGET database were included. Iterative LASSO regression and multivariate Cox regression analysis were used to screen the IRLs signature with the optimal AUC. The predict function was used to calculate the risk score and divide osteosarcoma into a high-risk group and low-risk group based on the optimal cut-off value of the risk score. The lncRNAs in IRLs signature that affect metastasis were screened for in vitro validation. Single sample gene set enrichment analysis (ssGSEA) and ESTIMATE algorithms were used to evaluate the role of TIM in the influence of IRLs on osteosarcoma prognosis.Results: Ten IRLs constituted the IRLs signature, with an AUC of 0.96. The recurrence and metastasis rates of osteosarcoma in the high-risk group were higher than those in the low-risk group. In vitro experiments showed that knockdown of lncRNA (AC006033.2) could increase the proliferation, migration, and invasion of osteosarcoma. ssGSEA and ESTIMATE results showed that the immune cell content and immune score in the low-risk group were generally higher than those in the high-risk group. In addition, the expression levels of immune escape-related genes were higher in the high-risk group.Conclusion: The IRLs signature is a reliable biomarker for the prognosis of osteosarcoma, and they alter the prognosis of osteosarcoma. In addition, IRLs signature and patient prognosis may be related to TIM in osteosarcoma. The higher the content of immune cells in the TIM of osteosarcoma, the lower the risk score of patients and the better the prognosis. The higher the expression of immune escape-related genes, the lower the risk score of patients and the better the prognosis.


2021 ◽  
Author(s):  
Congli Jia ◽  
Fu Yang ◽  
Ruining Li

Abstract Background: Breast cancer (BC) is the most common cancer among women, with high rates of metastasis and recurrence. Some studies have confirmed that pyroptosis is an immune-related programmed cell death. However, the correlation between the expression of pyroptosis-related genes in BC and its prognosis remains unclear. Methods: In this study, we identified 38 pyroptosis-related genes that were differentially expressed between BC and normal tissues. The prognostic value of each pyroptosis-related gene was evaluated using patient data from The Cancer Genome Atlas (TCGA). The Cox regression method was performed to establish a prognostic model for 16-gene signature, classifying all BC patients in the TCGA database into a low-or high-risk group. Results: The survival rate of BC patients in the high-risk group was significantly lower than that in the low-risk group (P<0.01). Prognostic model is independent prognostic factor for BC patients compared to clinical features. Single sample gene set enrichment analysis (ssGSEA) showed a decrease for immune cells and immune function in the high-risk group. Conclusions: Pyroptosis-related genes influence the tumor immune microenvironment and can predict the prognosis of BC.


2020 ◽  
Vol 10 ◽  
Author(s):  
Qiongxuan Fang ◽  
Hongsong Chen

BackgroundHepatocellular carcinoma (HCC) is the seventh most common malignancy and the second most common cause of cancer-related deaths. Autophagy plays a crucial role in the development and progression of HCC.MethodsUnivariate and Lasso Cox regression analyses were performed to determine a gene model that was optimal for overall survival (OS) prediction. Patients in the GSE14520 and GSE54236 datasets of the Cancer Genome Atlas (TCGA) were divided into the high-risk and low-risk groups according to established ATG models. Univariate and multivariate Cox regression analyses were used to identify risk factors for OS for the purpose of constructing nomograms. Calibration and receiver operating characteristic (ROC) curves were used to evaluate model performance. Real-time PCR was used to validate the effects of the presence or absence of an autophagy inhibitor on gene expression in HepG2 and Huh7 cell lines.ResultsOS in the high-risk group was significantly shorter than that in the low-risk group. Gene set enrichment analysis (GSEA) indicated that the association between the low-risk group and autophagy- as well as immune-related pathways was significant. ULK2, PPP3CC, and NAFTC1 may play vital roles in preventing HCC progression. Furthermore, tumor environment analysis via ESTIMATION indicated that the low-risk group was associated with high immune and stromal scores. Based on EPIC prediction, CD8+ T and B cell fractions in the TCGA and GSE54236 datasets were significantly higher in the low-risk group than those in the high-risk group. Finally, based on the results of univariate and multivariate analyses three variables were selected for nomogram development. The calibration plots showed good agreement between nomogram prediction and actual observations. Inhibition of autophagy resulted in the overexpression of genes constituting the gene model in HepG2 and Huh7 cells.ConclusionsThe current study determined the role played by autophagy-related genes (ATGs) in the progression of HCC and constructed a novel nomogram that predicts OS in HCC patients, through a combined analysis of TCGA and gene expression omnibus (GEO) databases.


2021 ◽  
Author(s):  
Yi Wang ◽  
Gui-Qi Zhu ◽  
Di Tian ◽  
Chang-Wu Zhou ◽  
Na Li ◽  
...  

Abstract Background N6-methyladenosine (m6A) modification and long non-coding RNAs (lncRNAs) play pivotal role in gastric cancer (GC) progression. The emergence of immunotherapy in GC has created a paradigm shift in the approach of treatment, whereas there is significant heterogeneity with regard to degree of treatment responses, which results from the variability of tumor immune microenvironment (TIME). How the interplay between them enrolled in the shaping of TIME remains unclear. Methods The RNA sequencing and clinical data of GC patients were collected from TCGA database. Pearson correlation test and univariate Cox analysis were used to screen out m6A-related lncRNAs. Consensus clustering was implemented to classify GC patients into 2 subtypes. Survival analysis, the infiltration of immune cells, Gene set enrichment analysis (GSEA) and the mutation profiles were analyzed and compared between two clusters. Then least absolute shrinkage and selection operator (LASSO) COX regression was implemented to select pivotal genes and risk score model was constructed accordingly. The prognosis value of the risk model was explored. In addition, the discrepancies of response to immune checkpoints inhibitor (ICIs) therapy were compared between different risk groups. Finally, we performed qRT-PCR to detect the expression pattern in 35 tumor tissues and paired adjacent normal tissue, and validated the prognostic value of risk model in the our cohort (N=35). Results The expression profiles of 23 lncRNAs were included to cluster patients into different subtypes. Cluster1 with worse prognosis harbored higher immune score, stromal score, ESTIMATE score and mutation rate of genes. Different immune cell infiltration pattern were also displayed between different clusters. GSEA showed that cluster1 was preferentially enriched with tumor hallmarks and tumor correlated biological pathways. Next, 9 lncRNAs were selected by LASSO regression model to construct risk model. Patients in the high risk group had poor prognosis. The prognosis value of this model was also validated in our cohort. As for predicting responses to the ICIs therapy, we found that patients from high risk group had lower TMB score and lower proportion of MSI-H subtype. Moreover, patients had distinct immunophenoscores in different risk groups. Conclusion Our study revealed that the potential interplay between m6A modification and lncRNAs might have critical role in predicting GC prognosis, sculpting TIME landscape and predicting the responses to immune checkpoints inhibitors therapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Feng Wang ◽  
Cheng Chen ◽  
Wei-Peng Chen ◽  
Zu-Ling Li ◽  
Hui Cheng

Ferroptosis is a mode of regulated cell death that depends on iron and plays pivotal roles in regulating various biological processes in human cancers. However, the role of ferroptosis in gastric cancer (GC) remains unclear. In our study, a total of 2721 differentially expressed genes (DEGs) were filtered based on The Cancer Genome Atlas (TCGA) ( n = 375 ) dataset. Weighted gene coexpression network (WGCNA) analysis was then used and identified 7 modules, of which the blue module with the most significant enrichment result was selected. By taking the intersections of the blue module and ferroptosis-related genes (FRGs), we obtained 23 common genes. Functional analysis was performed to explore the biological function of the genes of interest, and with univariate Cox regression (UCR) analysis, survival genes were screened to construct a prognostic model based on 3 genes (SLC1A5, ANGPTL4, and CGAS), which could play a role in predicting the survival of GC patients. UCR and multivariate Cox regression (MCR) analysis revealed that the prognostic index could be used as an independent prognostic indicator and validated using another GSE84437 dataset. Notably, patients in the high-risk group had higher mutation frequencies, such as TTN and TP53. TIMER analysis demonstrated that the risk score strongly correlated with macrophage and CD4+ T cell infiltration. In addition, the high- and low-risk groups illustrated different distributions of different immune statuses. Furthermore, the low-risk group had a higher immunophenoscore (IPS), which meant a better response to immune checkpoint inhibitors (ICIs). Finally, gene set enrichment analysis (GSEA) revealed several significant pathways involved in GC. In this study, a novel FRG signature was built that could predict GC prognosis and reflect the status of the tumor immune microenvironment.


Sign in / Sign up

Export Citation Format

Share Document