scholarly journals Development and Validation of a Novel Ferroptosis-Related Gene Signature for Predicting Prognosis and the Immune Microenvironment in Gastric Cancer

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Feng Wang ◽  
Cheng Chen ◽  
Wei-Peng Chen ◽  
Zu-Ling Li ◽  
Hui Cheng

Ferroptosis is a mode of regulated cell death that depends on iron and plays pivotal roles in regulating various biological processes in human cancers. However, the role of ferroptosis in gastric cancer (GC) remains unclear. In our study, a total of 2721 differentially expressed genes (DEGs) were filtered based on The Cancer Genome Atlas (TCGA) ( n = 375 ) dataset. Weighted gene coexpression network (WGCNA) analysis was then used and identified 7 modules, of which the blue module with the most significant enrichment result was selected. By taking the intersections of the blue module and ferroptosis-related genes (FRGs), we obtained 23 common genes. Functional analysis was performed to explore the biological function of the genes of interest, and with univariate Cox regression (UCR) analysis, survival genes were screened to construct a prognostic model based on 3 genes (SLC1A5, ANGPTL4, and CGAS), which could play a role in predicting the survival of GC patients. UCR and multivariate Cox regression (MCR) analysis revealed that the prognostic index could be used as an independent prognostic indicator and validated using another GSE84437 dataset. Notably, patients in the high-risk group had higher mutation frequencies, such as TTN and TP53. TIMER analysis demonstrated that the risk score strongly correlated with macrophage and CD4+ T cell infiltration. In addition, the high- and low-risk groups illustrated different distributions of different immune statuses. Furthermore, the low-risk group had a higher immunophenoscore (IPS), which meant a better response to immune checkpoint inhibitors (ICIs). Finally, gene set enrichment analysis (GSEA) revealed several significant pathways involved in GC. In this study, a novel FRG signature was built that could predict GC prognosis and reflect the status of the tumor immune microenvironment.

Author(s):  
Shuang Dai ◽  
Tao Liu ◽  
Xiao-Qin Liu ◽  
Xiao-Ying Li ◽  
Ke Xu ◽  
...  

Background: Tumor immune microenvironment plays a vital role in tumorigenesis and progression of gastric cancer (GC), but potent immune biomarkers for predicting the prognosis have not been identified yet.Methods: At first, RNA-sequencing and clinical data from The Cancer Genome Atlas (TCGA) were mined to identify an immune-risk signature using least absolute shrinkage and selection operator (LASSO) regression and multivariate stepwise Cox regression analyses. Furthermore, the risk score of each sample was calculated, and GC patients were divided into high-risk group and low-risk group based on their risk scores. Subsequently, the performance of this signature, including the correlation with overall survival (OS), clinical features, immune cell infiltration, and immune response, has been tested in GC data from TCGA database and Gene Expression Omnibus (GSE84437), respectively.Results: An immune signature composed of four genes (MAGED1, ACKR3, FZD2, and CTLA4) was constructed. The single sample gene set enrichment analysis (ssGSEA) indicated that activated CD4+/CD8+ T cell, activated dendritic cell, and effector memory CD8+ T cell prominently increased in the low-risk group, showing relatively high immune scores and low stromal scores. Further GSEA analysis indicated that TGF-β, Ras, and Rap1 pathways were activated in the high-risk group, while Th17/Th1/Th2 differentiation, T cell receptor and PD-1/PD-L1 checkpoint pathways were activated in the low-risk group. Low-risk patients presented higher tumor mutation burden (TMB) and expression of HLA-related genes. The immune-associated signature showed an excellent predictive ability for 2-, 3-, and 5-year OS in GC.Conclusion: The immune-related prognosis model contributes to predicting the prognosis of GC patients and providing valuable information about their response to immunotherapy using integrated bioinformatics methods.


2021 ◽  
Author(s):  
Fang Wen ◽  
Xiaoxue Chen ◽  
Wenjie Huang ◽  
Shuai Ruan ◽  
Suping Gu ◽  
...  

Abstract Background: The diagnosis rate and mortality of gastric cancer (GC) are among the highest in the global, so it is of great significance to predict the survival time of GC patients. Ferroptosis and iron-metabolism make a critical impact on tumor development and are closely linked to the treatment of cancer and the prognosis of patients. However, the predictive value of the genes involved in ferroptosis and iron-metabolism in GC and their effects on immune microenvironment remain to be further clarified.Methods: In this study, the RNA sequence information and general clinical indicators of GC patients were acquired from the public databases. We first systematically screen out 134 DEGs and 13 PRGs related to ferroptosis and iron-metabolism. Then, we identified six PRDEGs (GLS2, MTF1, SLC1A5, SP1, NOX4, and ZFP36) based on the LASSO-penalized Cox regression analysis. The 6-gene prognostic risk model was established in the TCGA cohort and the GC patients were separated into the high- and the low-risk groups through the risk score median value. GEO cohort was used for verification. The expression of PRDEGs was verified by quantitative QPCR.Results: Our study demonstrated that patients in the low-risk group had a higher survival probability compared with those in high-risk group. In addition, univariate and multivariate Cox regression analyses confirmed that the risk score was an independent prediction parameter. The ROC curve analysis and nomogram manifested that the risk model had the high predictive ability and was more sensitive than general clinical features. Furthermore, compared with the high-risk group, the low-risk group had higher TMB and a longer 5-year survival period. In the immune microenvironment of GC, there were also differences in immune function and highly infiltrated immune cells between the two risk groups.Conclusions: The prognostic risk model based on the six genes associated with ferroptosis and iron-metabolism has a good performance for predicting the prognosis of patients with GC. The treatment of cancer by inducing tumor ferroptosis or mediating tumor iron-metabolism, especially combined with immunotherapy, provides a new possibility for individualized treatment of GC patients.


2020 ◽  
Author(s):  
Andi Ma ◽  
Yukai Sun ◽  
Racheal O. Ogbodu ◽  
Ling Xiao ◽  
Haibing Deng ◽  
...  

Abstract Background: It is well known that long non-coding RNAs (lncRNAs) play a vital role in cancer. We aimed to explore the prognostic value of potential immune-related lncRNAs in hepatocellular carcinoma (HCC). Methods: Validated the established lncRNA signature of 343 patients with HCC from The Cancer Genome Atlas (TCGA) and 81 samples from Gene Expression Omnibus (GEO). Immune-related lncRNAs for HCC prognosis were evaluated using Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) analyses. LASSO analysis was performed to calculate a risk score formula to explore the difference in overall survival between high- and low-risk groups in TCGA, which was verified using GEO, Gene Ontology (GO), and pathway-enrichment analysis. These analyses were used to identify the function of screened genes and construct a co-expression network of these genes. Results: Using computational difference algorithms and lasso Cox regression analysis, the differentially expressed and survival-related immune-related genes (IRGs) among patients with HCC were established as five novel immune-related lncRNA signatures (AC099850.3, AL031985.3, PRRT3-AS1, AC023157.3, MSC-AS1). Patients in the low‐risk group showed significantly better survival than patients in the high‐risk group ( P = 3.033e−05). The signature identified can be an effective prognostic factor to predict patient survival. The nomogram showed some clinical net benefits predicted by overall survival. In order to explore its underlying mechanism, several methods of enrichment were elucidated using Gene Set Enrichment Analysis. Conclusion: Identifying five immune-related lncRNA signatures has important clinical implications for predicting patient outcome and guiding tailored therapy for patients with HCC with further prospective validation.


2021 ◽  
Author(s):  
Congli Jia ◽  
Fu Yang ◽  
Ruining Li

Abstract Background: Breast cancer (BC) is the most common cancer among women, with high rates of metastasis and recurrence. Some studies have confirmed that pyroptosis is an immune-related programmed cell death. However, the correlation between the expression of pyroptosis-related genes in BC and its prognosis remains unclear. Methods: In this study, we identified 38 pyroptosis-related genes that were differentially expressed between BC and normal tissues. The prognostic value of each pyroptosis-related gene was evaluated using patient data from The Cancer Genome Atlas (TCGA). The Cox regression method was performed to establish a prognostic model for 16-gene signature, classifying all BC patients in the TCGA database into a low-or high-risk group. Results: The survival rate of BC patients in the high-risk group was significantly lower than that in the low-risk group (P<0.01). Prognostic model is independent prognostic factor for BC patients compared to clinical features. Single sample gene set enrichment analysis (ssGSEA) showed a decrease for immune cells and immune function in the high-risk group. Conclusions: Pyroptosis-related genes influence the tumor immune microenvironment and can predict the prognosis of BC.


2021 ◽  
Author(s):  
Feng Wang ◽  
Cheng Chen ◽  
Wei-Peng Chen ◽  
Zu-Ling Li ◽  
Hui Cheng

Abstract Background Ferroptosis is a mode of regulated cell death that depends on iron, plays pivotal roles in regulating various biological process in human cancers. However, the role of ferroptosis in Gastric cancer (GC) remains unclear. Methods A total of 2721 differentially expressed genes (DEGs) were filtered base on The Cancer Genome Atlas (TCGA) (n = 375) dataset. Gene modules were identified based on co-expression network analysis (WGCNA). Functional analysis was performed to explore the biological function. Lasso-penalized and univariate Cox regression (UCR) analysis, survival genes were screened out to construct a prognostic model, which validated by the GSE43292 dataset. Gene set enrichment analysis (GSEA) for prognostic index was performed. Finally, the correlations of ferroptosis and immune cells were assessed through the TIMER database. Results Compared to normal specimens, 1063 highly upregulated and 1658 downregulated genes respectively and their normal counterparts in GC specimens were screened. WGCNA analysis was used and identified 7 modules, of which, blue module with the most significant enrichment result was selected. By taking intersections of blue module and differentially expressed ferroptosis-related genes (DEFRGs), we got 23 common genes. Functional analysis was performed to explore the biological function of the interested genes, and with the consequences Lasso-penalized and univariate Cox regression (UCR) analysis, survival genes were screened out to construct a prognostic model based on 3 genes (SLC1A5, ANGPTL4, and CGAS), which could play a role in predicting the survival of GC patients. UCR and multivariate Cox regression (MCR) analysis revealed that the prognostic index could be used as independent prognostic indicators and validated using another GSE84437 dataset. Notably, patients in high-risk groups had higher levels of higher mutation frequencies such as TTN and TP53.Mechanistically. Gene set enrichment analysis (GSEA) unveiled several significant and pathways involved in GC. TIMER analysis demonstrated that risk score strongly correlated with Macrophage and CD4 + T cells infiltration. In addition, high- and low-risk group illustrated different distributions in different immune status. Conclusions In this study, a novel FRGs signature was built. It could accurately predict GC prognosis and pave the new way for diagnosis and therapy strategy. May reflect the status of tumor immune microenvironment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi Jin ◽  
Zhanwang Wang ◽  
Dong He ◽  
Yuxing Zhu ◽  
Xueying Hu ◽  
...  

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a high rate of mortality and recurrence. N6-methyladenosine methylation (m6A) is the most common modification to affect cancer development, but to date, the potential role of m6A regulators in ACC prognosis is not well understood. In this study, we systematically analyzed 21 m6A regulators in ACC samples from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. We identified three m6A modification patterns with different clinical outcomes and discovered a significant relationship between diverse m6A clusters and the tumor immune microenvironment (immune cell types and ESTIMATE algorithm). Additionally, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed that the m6A clusters were strongly associated with immune infiltration in the ACC. Next, to further explore the m6A prognostic signatures in ACC, we implemented Lasso (Least Absolute Shrinkage and Selection Operator) Cox regression to establish an eight-m6A-regulator prognostic model in the TCGA dataset, and the results showed that the model-based high-risk group was closely correlated with poor overall survival (OS) compared with the low-risk group. Subsequently, we validated the key modifications in the GEO datasets and found that high HNRNPA2B1 expression resulted in poor OS and event-free survival (EFS) in ACC. Moreover, to further decipher the molecular mechanisms, we constructed a competing endogenous RNA (ceRNA) network based on HNRNPA2B1, which consists of 12 long noncoding RNAs (lncRNAs) and 1 microRNA (miRNA). In conclusion, our findings indicate the potential role of m6A modification in ACC, providing novel insights into ACC prognosis and guiding effective immunotherapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sheng Zheng ◽  
Zizhen Zhang ◽  
Ning Ding ◽  
Jiawei Sun ◽  
Yifeng Lin ◽  
...  

Abstract Introduction Angiogenesis is a key factor in promoting tumor growth, invasion and metastasis. In this study we aimed to investigate the prognostic value of angiogenesis-related genes (ARGs) in gastric cancer (GC). Methods mRNA sequencing data with clinical information of GC were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. The differentially expressed ARGs between normal and tumor tissues were analyzed by limma package, and then prognosis‑associated genes were screened using Cox regression analysis. Nine angiogenesis genes were identified as crucially related to the overall survival (OS) of patients through least absolute shrinkage and selection operator (LASSO) regression. The prognostic model and corresponding nomograms were establish based on 9 ARGs and verified in in both TCGA and GEO GC cohorts respectively. Results Eighty-five differentially expressed ARGs and their enriched pathways were confirmed. Significant enrichment analysis revealed that ARGs-related signaling pathway genes were highly related to tumor angiogenesis development. Kaplan–Meier analysis revealed that patients in the high-risk group had worse OS rates compared with the low-risk group in training cohort and validation cohort. In addition, RS had a good prognostic effect on GC patients with different clinical features, especially those with advanced GC. Besides, the calibration curves verified fine concordance between the nomogram prediction model and actual observation. Conclusions We developed a nine gene signature related to the angiogenesis that can predict overall survival for GC. It’s assumed to be a valuable prognosis model with high efficiency, providing new perspectives in targeted therapy.


2022 ◽  
Vol 12 ◽  
Author(s):  
Lan-Xin Mu ◽  
You-Cheng Shao ◽  
Lei Wei ◽  
Fang-Fang Chen ◽  
Jing-Wei Zhang

Purpose: This study aims to reveal the relationship between RNA N6-methyladenosine (m6A) regulators and tumor immune microenvironment (TME) in breast cancer, and to establish a risk model for predicting the occurrence and development of tumors.Patients and methods: In the present study, we respectively downloaded the transcriptome dataset of breast cancer from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database to analyze the mutation characteristics of m6A regulators and their expression profile in different clinicopathological groups. Then we used the weighted correlation network analysis (WGCNA), the least absolute shrinkage and selection operator (LASSO), and cox regression to construct a risk prediction model based on m6A-associated hub genes. In addition, Immune infiltration analysis and gene set enrichment analysis (GSEA) was used to evaluate the immune cell context and the enriched gene sets among the subgroups.Results: Compared with adjacent normal tissue, differentially expressed 24 m6A regulators were identified in breast cancer. According to the expression features of m6A regulators above, we established two subgroups of breast cancer, which were also surprisingly distinguished by the feature of the immune microenvironment. The Model based on modification patterns of m6A regulators could predict the patient’s T stage and evaluate their prognosis. Besides, the low m6aRiskscore group presents an immune-activated phenotype as well as a lower tumor mutation load, and its 5-years survival rate was 90.5%, while that of the high m6ariskscore group was only 74.1%. Finally, the cohort confirmed that age (p < 0.001) and m6aRiskscore (p < 0.001) are both risk factors for breast cancer in the multivariate regression.Conclusion: The m6A regulators play an important role in the regulation of breast tumor immune microenvironment and is helpful to provide guidance for clinical immunotherapy.


2021 ◽  
Author(s):  
Junliang Li ◽  
Lingfang Zhang ◽  
Tiankang Guo

Abstract Background. Peritoneal metastatic gastric cancer (PMGC) is very common, and usually, the prognosis is poor. There is currently an absence of accurate methods for the early diagnosis and prediction of peritoneal metastasis (PM). This highlights the need to develop strategies to identify the risk of PMGC. Methods. We performed a comprehensive discovery of biomarkers to predict PM by analyzing profiling datasets from GSE62254. The prognostic PM-related genes were obtained using the univariate Cox regression analysis, followed by a least absolute shrinkage and selection operator regression (LASSO) to establish a risk score model. The gene set enrichment analysis (GSEA) was used to determine the pathway enrichment in both the high- and low-risk groups. The 1-, 3-, and 5-year overall survival (OS) rates and area under the receiver operating characteristic curve (ROC) were used to compare the predictive accuracy-based risk stratification. In addition, an unsupervised clustering algorithm was applied to divide patients into subgroups according to the PM-related genes. Results. We identified 10 genes (MMP12, TAC1, TSPYL5, PPP1R14A, TMSB15B, NPY1R, PCDH9, EPM2AIP1, TIG7, and DYNC1I1) for PMGC diagnosis. The OS rates between the high- and low-risk groups at 1-, 3-, and 5-years were significantly different in the training and validation sets. The AUCs at 1-, 3-, and 5-years in the training set were 0.71, 0.74, and 0.73, respectively. In the validation set, the AUCs at 1-, 3-, and 5-years were 0.68, 0.66, and 0.69, respectively. The 10 gene signatures were correlated with immune cell infiltration in both the high- and low-risk groups. In addition, based on the GSEA, several significant pathways were enriched in the high-risk PMGC group, such as the Wnt and transforming growth factor beta (TGF-β) signaling pathway and leukocyte transendothelial migration pathway. Furthermore, unsupervised cluster analysis showed that the model could distinguish the level of risk among patients with PMGC. Conclusions. Overall, 10 gene signatures were identified for PMGC risk prediction. These may be valuable in making clinical decisions to improve treatment outcomes in patients with PMGC.


2020 ◽  
Vol 10 ◽  
Author(s):  
Zuhua Chen ◽  
Bo Liu ◽  
Minxiao Yi ◽  
Hong Qiu ◽  
Xianglin Yuan

PurposeThe exploration and interpretation of DNA methylation-driven genes might contribute to molecular classification, prognostic prediction and therapeutic choice. In this study, we built a prognostic risk model via integrating analysis of the transcriptome and methylation profile for patients with gastric cancer (GC).MethodsThe mRNA expression profiles, DNA methylation profiles and corresponding clinicopathological information of 415 GC patients were downloaded from The Cancer Genome Atlas (TCGA). Differential expression and correlation analysis were performed to identify DNA methylation-driven genes. The candidate genes were selected by univariate Cox regression analyses followed by the least absolute shrinkage and selection operator (LASSO) regression. A prognostic risk nomogram model was then built together with clinicopathological parameters.Results5 DNA methylation-driven genes (CXCL3, F5, GNAI1, GAMT and GHR) were identified by integrated analyses and selected to construct the prognostic risk model with clinicopathological parameters. High expression and low DNA hypermethylation of F5, GNAI1, GAMT and GHR, as well as low expression and high DNA hypomethylation of CXCL3 were significantly associated with poor prognosis rates, respectively. The high-risk group showed a significantly shorter prognosis than the low-risk group in the TCGA dataset (HR = 0.212, 95% CI = 0.139–0.322, P = 2e-15). The final nomogram model showed high predictive efficiency and consistency in the training and validation group.ConclusionWe construct and validate a prognostic nomogram model for GC based on five DNA methylation-driven genes with high performance and stability. This nomogram model might be a powerful tool for prognosis evaluation in the clinic and also provided novel insights into the epigenetics in GC.


Sign in / Sign up

Export Citation Format

Share Document