scholarly journals Shaping the Microglia in Retinal Degenerative Diseases Using Stem Cell Therapy: Practice and Prospects

Author(s):  
Ni Jin ◽  
Weiwei Sha ◽  
Lixiong Gao

Retinal degenerative disease (RDD) refers to a group of diseases with retinal degeneration that cause vision loss and affect people’s daily lives. Various therapies have been proposed, among which stem cell therapy (SCT) holds great promise for the treatment of RDDs. Microglia are immune cells in the retina that have two activation phenotypes, namely, pro-inflammatory M1 and anti-inflammatory M2 phenotypes. These cells play an important role in the pathological progression of RDDs, especially in terms of retinal inflammation. Recent studies have extensively investigated the therapeutic potential of stem cell therapy in treating RDDs, including the immunomodulatory effects targeting microglia. In this review, we substantially summarized the characteristics of RDDs and microglia, discussed the microglial changes and phenotypic transformation of M1 microglia to M2 microglia after SCT, and proposed future directions for SCT in treating RDDs.

2020 ◽  
Vol 15 (5) ◽  
pp. 1679-1688
Author(s):  
Alex HP Chan ◽  
Ngan F Huang

Although stem cell therapy has tremendous therapeutic potential, clinical translation of stem cell therapy has yet to be fully realized. Recently, patient comorbidities and lifestyle choices have emerged to be important factors in the efficacy of stem cell therapy. Tobacco usage is an important risk factor for numerous diseases, and nicotine exposure specifically has become increasing more prevalent with the rising use of electronic cigarettes. This review describes the effects of nicotine exposure on the function of various stem cells. We place emphasis on the differential effects of nicotine exposure in vitro and as well as in preclinical models. Further research on the effects of nicotine on stem cells will deepen our understanding of how lifestyle choices can impact the outcome of stem cell therapies.


2021 ◽  
Vol 14 ◽  
Author(s):  
Yu Lin ◽  
Xiang Ren ◽  
Yongjiang Chen ◽  
Danian Chen

Retinal degenerative diseases (RDDs) are a group of diseases contributing to irreversible vision loss with yet limited therapies. Stem cell-based therapy is a promising novel therapeutic approach in RDD treatment. Mesenchymal stromal/stem cells (MSCs) have emerged as a leading cell source due to their neurotrophic and immunomodulatory capabilities, limited ethical concerns, and low risk of tumor formation. Several pre-clinical studies have shown that MSCs have the potential to delay retinal degeneration, and recent clinical trials have demonstrated promising safety profiles for the application of MSCs in retinal disease. However, some of the clinical-stage MSC therapies have been unable to meet primary efficacy end points, and severe side effects were reported in some retinal “stem cell” clinics. In this review, we provide an update of the interaction between MSCs and the RDD microenvironment and discuss how to balance the therapeutic potential and safety concerns of MSCs' ocular application.


2018 ◽  
Vol 132 (17) ◽  
pp. 1977-1994 ◽  
Author(s):  
Meg L. McFetridge ◽  
Mark P. Del Borgo ◽  
Marie-Isabel Aguilar ◽  
Sharon D. Ricardo

Chronic kidney disease (CKD) is a major and growing public health concern with increasing incidence and prevalence worldwide. The therapeutic potential of stem cell therapy, including mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) holds great promise for treatment of CKD. However, there are significant bottlenecks in the clinical translation due to the reduced number of transplanted cells and the duration of their presence at the site of tissue damage. Bioengineered hydrogels may provide a route of cell delivery to enhance treatment efficacy and optimise the targeting effectiveness while minimising any loss of cell function. In this review, we highlight the advances in stem cell therapy targeting kidney disease and discuss the emerging role of hydrogel delivery systems to fully realise the potential of adult stem cells as a regenerative therapy for CKD in humans. MSCs and EPCs mediate kidney repair through distinct paracrine effects. As a delivery system, hydrogels can prolong these paracrine effects by improving retention at the site of injury and protecting the transplanted cells from the harsh inflammatory microenvironment. We also discuss the features of a hydrogel, which may be tuned to optimise the therapeutic potential of encapsulated stem cells, including cell-adhesive epitopes, material stiffness, nanotopography, modes of gelation and degradation and the inclusion of bioactive molecules. This review concludes with a discussion of the challenges to be met for the widespread clinical use of hydrogel delivery system of stem cell therapy for CKD.


2021 ◽  
Vol 22 (18) ◽  
pp. 10151
Author(s):  
Hau Jun Chan ◽  
Yanshree ◽  
Jaydeep Roy ◽  
George Lim Tipoe ◽  
Man-Lung Fung ◽  
...  

Alzheimer’s disease (AD) is a progressive debilitating neurodegenerative disease and the most common form of dementia in the older population. At present, there is no definitive effective treatment for AD. Therefore, researchers are now looking at stem cell therapy as a possible treatment for AD, but whether stem cells are safe and effective in humans is still not clear. In this narrative review, we discuss both preclinical studies and clinical trials on the therapeutic potential of human stem cells in AD. Preclinical studies have successfully differentiated stem cells into neurons in vitro, indicating the potential viability of stem cell therapy in neurodegenerative diseases. Preclinical studies have also shown that stem cell therapy is safe and effective in improving cognitive performance in animal models, as demonstrated in the Morris water maze test and novel object recognition test. Although few clinical trials have been completed and many trials are still in phase I and II, the initial results confirm the outcomes of the preclinical studies. However, limitations like rejection, tumorigenicity, and ethical issues are still barriers to the advancement of stem cell therapy. In conclusion, the use of stem cells in the treatment of AD shows promise in terms of effectiveness and safety.


2021 ◽  
Vol 99 (2) ◽  
pp. 140-150
Author(s):  
Niketa Sareen ◽  
Abhay Srivastava ◽  
Sanjiv Dhingra

Ischemic heart disease is among the primary causes of cardiovascular-related deaths worldwide. Conventional treatments including surgical interventions and medical therapies aid in preventing further damage to heart muscle but are unable to provide a permanent solution. In recent years, stem cell therapy has emerged as an attractive alternative to restore damaged myocardium after myocardial injury. Allogeneic (donor-derived) mesenchymal stem cells (MSCs) have shown great promise in preclinical and clinical studies, making them the most widely accepted candidates for cardiac cell therapy. MSCs promote cardiac repair by modulating host immune system and secreting various soluble factors, of which prostaglandin E2 (PGE2) is an important one. PGE2 plays a significant role in regulating cardiac remodeling following myocardial injury. In this review, we provide an overview of allogeneic MSCs as candidates for myocardial regeneration with a focus on the role of the PGE2/cyclooxygenase-2 (COX2) pathway in mediating these effects.


Sign in / Sign up

Export Citation Format

Share Document