scholarly journals Combined Methodologies for Determining In Vitro Bioavailability of Drugs and Prediction of In Vivo Bioequivalence From Pharmaceutical Oral Formulations

2021 ◽  
Vol 9 ◽  
Author(s):  
A. De Simone ◽  
L. Davani ◽  
S. Montanari ◽  
V. Tumiatti ◽  
S. Avanessian ◽  
...  

With the aim of developing an in vitro model for the bioavailability (BA) prediction of drugs, we focused on the study of levonorgestrel (LVN) released by 1.5 mg generic and brand-name tablets. The developed method consisted in combining a standard dissolution test with an optimized parallel artificial membrane permeability assay (PAMPA) to gain insights into both drug release and gastrointestinal absorption. Interestingly, the obtained results revealed that the tablet standard dissolution test, combined with an optimized PAMPA, highlighted a significant decrease in the release (15 ± 0.01 μg min−1 vs 30 ± 0.01 μg min−1) and absorption (19 ± 7 × 10–6 ± 7 cm/s Pe vs 41 ± 15 × 10–6 cm/s Pe) profiles of a generic LVN tablet when compared to the brand-name formulation, explaining unbalanced in vivo bioequivalence (BE). By using this new approach, we could determine the actual LVN drug concentration dissolved in the medium, which theoretically can permeate the gastrointestinal (GI) barrier. In fact, insoluble LVN/excipient aggregates were found in the dissolution media giving rise to non-superimposable dissolution profiles between generic and brand-name LVN tablets. Hence, the results obtained by combining the dissolution test and PAMPA method provided important insights confirming that the combined methods can be useful in revealing crucial issues in the prediction of in vivo BE of drugs.

2006 ◽  
Vol 12 (1) ◽  
pp. 84-91 ◽  
Author(s):  
Mark Lakeram ◽  
David J. Lockley ◽  
David J. Sanders ◽  
Ruth Pendlington ◽  
Ben Forbes

Noncellular and cellular in vitro models for predicting intestinal absorption were used to investigate the transport and metabolism of parabens. The biomimetic artificial membrane permeability assay (BAMPA) membrane was constructed by impregnating a lipid solution on a hydrophobic filter. Caco-2 cells at passage numbers 65 to 80 were cultured in either the accelerated 3-day Biocoat™ system or the standard 21-day Transwell™ cell culture system. Paraben transport across the BAMPA system showed a parabolic relationship. The lowest log P (p-hydroxybenzoic acid) and highest log P compounds (heptyl and octyl parabens) had apparent permeabilities (Papp) less than 1.0 × 10-6 cm/s and Papp was maximal at approximately 8.5 × 10-6cm/s for the intermediate log P (ethylparaben) compound. With the Biocoat™, a similar parabolic relationship was found. In the 21-day Caco-2 cells, the parabens were metabolized by esterases at to p-hydroxybenzoic acid. In conclusion, the in vitro models added complementary insight into the absorption process, such as the transport route, intrinsic permeability, and extent of metabolism of the parabens. This study indicated that presystemic metabolism of orally ingested parabens to the p-hydroxybenzoic acid in the intestine may limit systemic exposure to alkyl-paraben esters in vivo.


2004 ◽  
Vol 100 (1) ◽  
pp. 121-133 ◽  
Author(s):  
Richard Y. Cheung ◽  
Robert Kuba ◽  
Andrew M. Rauth ◽  
Xiao Yu Wu

2019 ◽  
Vol 3 (2) ◽  
pp. 18-22
Author(s):  
Letícia Lenz Sfair ◽  
Caren Gobetti ◽  
Martin Steppe ◽  
Elfrides Schapoval

A dissolution test for mianserin hydrochloride in coated tablets containing 30 mg was developed and validated using a fast ultraviolet spectrophotometric method. The appropriate conditions were determinate after testing sink conditions, agitation spped and dissolution medium. The sink conditions tested showed that mianserin hydrochloride was soluble in 0.01 and 0.1 M hydrochloric acid (HCl), acetate buffer pH 4.1 and 5.0 and phosphate buffer pH 6.8. Then, dissolution tests were performed to investigate the drug release in each medium. Optimal conditions to carry out the dissolution test were 900 mL 0.1 M HCl and USP apparatus 2 (paddle) at 50 rpm stirring speed. The quantification method was also adapted and validated. The UV method showed specificity, linearity, precision and accuracy. The in vitro dissolution test can be used to evaluate the drug release profile and the data was used as an aid to establish a possible correlation with in vivo data.


Author(s):  
ASHWIN K ◽  
RAMA MOHAN REDDY T

Objective: The aim was to design, formulate, and evaluate the trilayer matrix tablets incorporated with quinapril for extend drug release. Methods: Quinapril trilayer matrix tablets were formulated using design of experiment software wherein initially 27 formulations (QF1-QF27) were designed for active layer from which one best formulation was chosen based on drug content, swelling index and in vitro release studies. The chosen formulation was formulated into extended release trilayed matrix tablet by varying proportions of polymers by direct compression and was evaluated for various physicochemical parameters, drug release. Best formulation was characterized for Fourier transform infrared (FTIR), stability, and pharmacokinetic study. Results: Out of 27 formulations highest drug release was exhibited by QF16 (98.85%) which was formulated into trilayer matrix tablets (AQF16- HQF16). Out of which EQF16 was found to exhibit highest values with 98.42% swelling index, 99.56% drug content, and 99.72% drug release in 24 h. All quinapril trilayer formulations showed zero-order and first-order for marketed product. The optimized formulation EQF16 was found to exhibit no interaction with excipients interpreted by FTIR and no significant changes were observed after loading for stability. In vivo studies conducted using optimized formulation EQF16 attained peak drug concentration (Tmax) of 4.0±0.06 and 1.0±0.03 h for the optimized and commercial formulations, respectively, while mean maximum drug concentration (Cmax) was 302.64±0.07 ng/mL and was significant (p<0.05) as compared to the quinapril marketed product formulation 358.78±0.75 ng/mL. Conclusion: Hence, quinapril was successfully formulated into trilayer matrix tablet and found to be stable.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Haarika B ◽  
Jyothi Sri S ◽  
K Abbulu

The purpose of present investigation was to develop floating matrix tablets of gemifloxacin mesylate, which after oral administration could prolong the gastric residence time, increase the drug bioavailability and diminish the side effects of irritating drugs. Tablets containing drug, various viscosity grades of hydroxypropyl methylcellulose such as HPMC K4M and HPMC K15M as matrix forming agent, Sodium bicarbonate as gas-forming agent and different additives were tested for their usefulness in formulating gastric floating tablets by direct compression method. The physical parameters, in vitro buoyancy, release characteristics and in vivo radiographic study were investigated in this study. The gemifloxacin mesylate floating tablets were prepared using HPMC K4M polymer giving more sustained drug release than the tablet containing HPMC K15M. All these formulations showed floating lag time of 30 to 47 sec and total floating time more than 12 h. The drug release was decreased when polymer concentration increases and gas generating agent decreases. Formulation that contains maximum concen-tration of both HPMC K15M and sodium bicarbonate (F9) showing sufficiently sustained with 99.2% of drug release at 12 h. The drug release from optimized formulation follows Higuchi model that indicates the diffusion controlled release. The best formulation (F9) was selected based on in vitro characteristics and used in vivo radiographic studies by incorporating barium sulphate as a radio-opaque agent and the tablet remained in the stomach for about 6 h.   


Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Kanteepan P

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. The current research study aimed to develop novel gastro-retentive mucoadhesive microspheres of rebamipide using ionotropic gelation technique. Studies of micromeritic properties confirmed that microspheres were free flowing with good packability. The in vitro drug release showed the sustained release of rebamipide up to 99.23 ± 0.13% within 12 h whereas marketed product displayed the drug release of 95.15 ± 0.23% within 1 h. The release mechanism from microspheres followed the zero-order and Korsmeyer-Peppas (R2 = 0.915, 0.969), respectively. The optimized M12 formulation displayed optimum features, such as entrapment efficiency 97%, particle size 61.94 ± 0.11 µm, percentage yield 98%, swelling index 95% and mucoadhesiveness was 97%. FTIR studies revealed no major incompatibility between drug and excipients. SEM confirmed the particles were of spherical in shape. Optimized formulation (M12) were stable at 40°C ± 2°C/75% RH ± 5% RH for 6 months. In vivo studies were performed and kinetic parameters like Cmax, Tmax, AUC0-t, AUC0-∞, t1/2, and Kel  were calculated. The marketed product Cmax (3.15 ± 0.05 ng/mL) was higher than optimized formulation (2.58 ± 0.03 ng/mL). The optimized formulation AUC0-t (15.25 ± 1.14 ng.hr/mL), AUC0-∞ (19.42 ± 1.24 ng.hr/mL) was significantly higher than that of marketed product AUC0-t (10.21 ± 1.26 ng.hr/mL) and AUC0-∞ (13.15 ± 0.05 ng.hr/mL). These results indicate an optimized formulation bioavailability of 2.5-fold greater than marketed product.  


2019 ◽  
Vol 9 (3) ◽  
pp. 248-263 ◽  
Author(s):  
Ashish K. Parashar ◽  
Preeti Patel ◽  
Arun K. Gupta ◽  
Neetesh K. Jain ◽  
Balak Das Kurmi

Background: The present study was aimed at developing and exploring the use of PEGylated Poly (propyleneimine) dendrimers for the delivery of an anti-diabetic drug, insulin. Methods: For this study, 4.0G PPI dendrimer was synthesized by successive Michael addition and exhaustive amidation reactions, using ethylenediamine as the core and acrylonitrile as the propagating agent. Two different activated PEG moieties were employed for PEGylation of PPI dendrimers. Various physicochemical and physiological parameters UV, IR, NMR, TEM, DSC, drug entrapment, drug release, hemolytic toxicity and blood glucose level studies of both PEGylated and non- PEGylated dendritic systems were determined and compared. Results: PEGylation of PPI dendrimers caused increased solubilization of insulin in the dendritic framework as well as in PEG layers, reduced drug release and hemolytic toxicity as well as increased therapeutic efficacy with reduced side effects of insulin. These systems were found to be suitable for sustained delivery of insulin by in vitro and blood glucose-level studies in albino rats, without producing any significant hematological disturbances. Conclusion: Thus, surface modification of PPI dendrimers with PEG molecules has been found to be a suitable approach to utilize it as a safe and effective nano-carrier for drug delivery.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 260 ◽  
Author(s):  
Dongwei Wan ◽  
Min Zhao ◽  
Jingjing Zhang ◽  
Libiao Luan

This study aimed to develop a novel sustained release pellet of loxoprofen sodium (LXP) by coating a dissolution-rate controlling sub-layer containing hydroxypropyl methyl cellulose (HPMC) and citric acid, and a second diffusion-rate controlling layer containing aqueous dispersion of ethyl cellulose (ADEC) on the surface of a LXP conventional pellet, and to compare its performance in vivo with an immediate release tablet (Loxinon®). A three-level, three-factor Box-Behnken design and the response surface model (RSM) were used to investigate and optimize the effects of the citric acid content in the sub-layer, the sub-layer coating level, and the outer ADEC coating level on the in vitro release profiles of LXP sustained release pellets. The pharmacokinetic studies of the optimal sustained release pellets were performed in fasted beagle dogs using an immediate release tablet as a reference. The results illustrated that both the citric acid (CA) and ADEC as the dissolution- and diffusion-rate controlling materials significantly decreased the drug release rate. The optimal formulation showed a pH-independent drug release in media at pH above 4.5 and a slightly slow release in acid medium. The pharmacokinetic studies revealed that a more stable and prolonged plasma drug concentration profile of the optimal pellets was achieved, with a relative bioavaibility of 87.16% compared with the conventional tablets. This article provided a novel concept of two-step control of the release rate of LXP, which showed a sustained release both in vitro and in vivo.


2021 ◽  
pp. 088391152199784
Author(s):  
Loveleen Kaur ◽  
Ajay Kumar Thakur ◽  
Pradeep Kumar ◽  
Inderbir Singh

Present study was aimed to synthesize and characterize Chitosan-Catechol conjugates and to design and develop mucoadhesive pellets loaded with lafutidine. SEM images indicated the presence of fibrous structures responsible for enhanced mucoadhesive potential of Chitosan-Catechol conjugates. Thermodynamic stability and amorphous nature of conjugates was confirmed by DSC and XRD studies respectively. Rheological studies were used to evaluate polymer mucin interactions wherein strong interactions between Chitosan-Catechol conjugate and mucin was observed in comparison to pristine chitosan and mucin. The mucoadhesion potential of Chitosan-Catechol (Cht-C) versus Chitosan (Cht) was assessed in silico using molecular mechanics simulations and the results obtained were compared with the in vitro and ex vivo results. Cht-C/mucin demonstrated much higher energy stabilization (∆E ≈ −65 kcal/mol) as compared to Cht/mucin molecular complex. Lafutidine-loaded pellets were prepared from Chitosan (LPC) and Chitosan-Catechol conjugates (LPCC) and were evaluated for various physical properties viz. flow, circularity, roundness, friability, drug content, particle size and percent mucoadhesion. In vitro drug release studies on LPC and LPCC pellets were performed for computing t50%, t90% and mean dissolution time. The values of release exponent from Korsmeyer-Peppas model was reported to be 0.443 and 0.759 for LPC and LPCC pellets suggesting Fickian and non-Fickian mechanism representing drug release, respectively. In vivo results depicted significant controlled release and enhanced residence of the drug after being released from the chitosan-catechol coated pellets. Chitosan-Catechol conjugates were found to be a promising biooadhesive polymer for the development of various mucoadhesive formulations.


Sign in / Sign up

Export Citation Format

Share Document